The phosphocarrier protein HPr of the bacterial phosphotransferase system globally regulates energy metabolism by directly interacting with multiple enzymes in Escherichia coli (original) (raw)
Related papers
Journal of Bacteriology, 2007
The histidine protein (HPr) is the energy-coupling protein of the phosphoenolpyruvate (PEP)-dependent carbohydrate:phosphotransferase system (PTS), which catalyzes sugar transport in many bacteria. In its functions, HPr interacts with a number of evolutionarily unrelated proteins. Mainly, it delivers phosphoryl groups from enzyme I (EI) to the sugar-specific transporters (EIIs). HPr proteins of different bacteria exhibit almost identical structures, and, where known, they use similar surfaces to interact with their target proteins. Here we studied the in vivo effects of the replacement of HPr and EI of Escherichia coli with the homologous proteins from Bacillus subtilis , a gram-positive bacterium. This replacement resulted in severe growth defects on PTS sugars, suggesting that HPr of B. subtili s cannot efficiently phosphorylate the EIIs of E. coli . In contrast, activation of the E. coli BglG regulatory protein by HPr-catalyzed phosphorylation works well with the B. subtilis HPr ...
Regulation of E. coli glycogen phosphorylase activity by HPr
Journal of Molecular Microbiology and Biotechnology
Bacteria sense continuous changes in their environment and adapt metabolically to effectively compete with other organisms for limiting nutrients. One system which plays an important part in this adaptation response is the phosphoenol-pyruvate:sugar phosphotransferase system (PTS). Many proteins interact with and are regulated by PTS components in bacteria. Here we review the interaction with and allosteric regulation of Escherichia coli glycogen phosphorylase (GP) activity by the histidine phosphocarrier protein HPr, which acts as part of a phosphoryl shuttle between enzyme I and sugar-specific proteins of the PTS. HPr mediates crosstalk between PTS sugar uptake and glycogen breakdown. The evolution of the allosteric regulation of E. coli GP by HPr is compared to that of other phosphorylases.
The complete phosphotransferase system in Escherichia coli
Journal of molecular microbiology and biotechnology, 2001
We here tabulate and describe all currently recognized proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) and their homologues encoded within the genomes of sequenced E. coli strains. There are five recognized Enzyme I homologues and six recognized HPr homologues. A nitrogen-metabolic PTS phosphoryl transfer chain encoded within the rpoN and ptsP operons and a tri-domain regulatory PTS protein encoded within the dha (dihydroxyacetone catabolic) operon, probably serve regulatory roles exclusively. In addition to several additional putative regulatory proteins, there are 21 (and possibly 22) recognized Enzyme II complexes. Of the 21 Enzyme II complexes, 7 belong to the fructose (Fru) family, 7 belong to the glucose (Glc) family, and 7 belong to the other PTS permease families. All of these proteins are briefly described, and phylogenetic data for the major families are presented.
Naturwissenschaften, 1998
In many bacteria a crucial link between metabolism and regulation of catabolic genes is based on the phosphotransferase sugar uptake system (PTS). We summarize the mechanisms of the signaling pathways originating from PTS and leading to regulation of transcription. A protein domain, called PTS regulation domain (PRD), is linked to many antiterminators and transcriptional activators and regulates their activity depending on its state of phosphorylation. Two sites can be phosphorylated in most PRDs: HPr-dependent modification at one site leads to activation while enzyme II dependent phosphorylation of the other site renders it inactive. In addition, PTS components are used to generate cofactors for regulators of transcription. The paradigm is the enzyme II dependent activity of adenylate cyclase determining the cyclic AMP level in Escherichia coli and thereby the activity of the catabolite activator protein. In many gram-positive bacteria catabolite repression is mediated by the catabolite control protein CcpA, which requires HPr Ser-46 phosphate as a cofactor to regulate transcription of catabolic genes. HPr Ser-46 phosphate is produced by HPr kinase, the activity of which is under metabolic control via the concentrations of glycolytic intermediates. These recent results establish a multifaceted regulatory role for PTS in addition to its wellestablished function in active sugar uptake.
Regulation of genes coding for enzyme constituents of the bacterial phosphotransferase system
Journal of Bacteriology
Regulation of the synthesis of the proteins of the phosphoenolpyruvate:sugar phosphotransferase system was systematically studied in wild-type and mutant strains of Salmonella typhimurium and Escherichia coli. The results suggest that enzyme I and HPr as well as the glucose-specific and the mannose-specific enzymes II are synthesized by a mechanism which depends on (i) cyclic adenosine monophosphate and its receptor protein; (ii) extracellular inducer; (iii) the sugar-specific enzyme II complex which recognizes the inducing sugar; and (iv) the general energy-coupling proteins of the phosphotransferase system, enzyme I and HPr.