Radiation-hydrodynamic simulations of thermally driven disc winds in X-ray binaries: a direct comparison to GRO J1655−40 (original) (raw)
Related papers
2016
A number of X-ray binaries exhibit clear evidence for the presence of disk winds in the high/soft state. A promising driving mechanism for these outflows is mass loss driven by the thermal expansion of X-ray heated material in the outer disk atmosphere. Higginbottom & Proga recently demonstrated that the properties of thermally-driven winds depend critically on the shape of the thermal equilibrium curve, since this determines the thermal stability of the irradiated material. For a given spectral energy distribution, the thermal equilibrium curve depends on exact balance between the various heating and cooling mechanisms at work. Most previous work on thermally-driven disk winds relied an analytical approximation to these rates. Here, we use the photoionization code cloudy to generate realistic heating and cooling rates which we then use in a 2.5D hydrodynamic model computed in ZEUS to simulate thermal winds in a typical black-hole X-ray binary. We find that these heating and cooling...
Thermal and radiation driving can produce observable disk winds in hard-state X-ray binaries
Monthly Notices of the Royal Astronomical Society
X-ray signatures of outflowing gas have been detected in several accreting black-hole binaries, always in the soft state. A key question raised by these observations is whether these winds might also exist in the hard state. Here, we carry out the first full-frequency radiation hydrodynamic simulations of luminous ($\rm {L = 0.5 \, L_{\mathrm{Edd}}}$) black-hole X-ray binary systems in both the hard and the soft state, with realistic spectral energy distributions (SEDs). Our simulations are designed to describe X-ray transients near the peak of their outburst, just before and after the hard-to-soft state transition. At these luminosities, it is essential to include radiation driving, and we include not only electron scattering, but also photoelectric and line interactions. We find powerful outflows with rmdotMwindsimeq2,dotMacc\rm {\dot{M}_{wind} \simeq 2 \, \dot{M}_{acc}}rmdotMwindsimeq2,dotMacc are driven by thermal and radiation pressure in both hard and soft states. The hard-state wind is significantly faster and carries ap...
Stellar Winds in Massive X-ray Binaries
Proceedings of the International Astronomical Union
Strong winds from massive stars are a topic of interest to a wide range of astrophysical fields. In High-Mass X-ray Binaries the presence of an accreting compact object on the one side allows to infer wind parameters from studies of the varying properties of the emitted X-rays; but on the other side the accretor’s gravity and ionizing radiation can strongly influence the wind flow. Based on a collaborative effort of astronomers both from the stellar wind and the X-ray community, this presentation attempts to review our current state of knowledge and indicate avenues for future progress.
Stellar Winds in High-Mass X-Ray Binaries
Properties of Hot Luminous Stars, 1998
High-mass X-ray binaries (HMXBs) represent an important stage in the evolution of massive binary systems. The compact object (in most cases an X-ray pulsar) not only provides information on the orbital and stellar parameters, but also probes the stellar wind of the massive companion, an OB supergiant or Be star. The X-ray luminosity directly depends on the density and the velocity of the wind at the orbit of the X-ray source. Important constraints on the stellar-wind structure can be set by studying the orbital modulation of UV P-Cygni profiles. In this paper different aspects of the interactive wind-accretion process are highlighted, such as the highly variable X-ray luminosity, the influence of the X-rays on the radiative acceleration of the wind inside the ionization zone, and the large-scale structures that trail the X-ray source in its orbit.
Modeling of hydrodynamic processes within high-mass X-ray binaries
Proceedings of the International Astronomical Union, 2018
High-mass X-ray binaries belong to the brightest objects in the X-ray sky. They usually consist of a massive O or B star or a blue supergiant while the compact X-ray emitting component is a neutron star (NS) or a black hole. Intensive matter accretion onto the compact object can take place through different mechanisms: wind accretion, Roche-lobe overflow, or circumstellar disk. In our multi-dimensional models we perform numerical simulations of the accretion of matter onto a compact companion in case of Be/X-ray binaries. Using Bondi-Hoyle-Littleton approximation, we estimate the NS accretion rate. We determine the Be/X-ray binary disk hydrodynamic structure and compare its deviation from isolated Be stars’ disk. From the rate and morphology of the accretion flow and the X-ray luminosity we improve the estimate of the disk mass-loss rate. We also study the behavior of a binary system undergoing a supernova explosion, assuming a blue supergiant progenitor with an aspherical circumste...
Really focused stellar winds in X-ray binaries
Astronomy & Astrophysics, 2012
Aims. We investigate the anisotropy of stellar winds in binaries to improve the models of accretion in high-mass X-ray binaries. Methods. We model numerically the stellar wind from a supergiant component of a binary in radial and three-dimensional radiation hydrodynamic approximation taking into account the Roche potential, Coriolis force, and radiative pressure in the continuum and spectral lines. Results. The Coriolis force influences substantially the mass loss and thus also the accretion rate. The focusing of the stellar wind by the gravitational field of the compact companion leads to the formation of a gaseous tail behind the companion.
Stellar wind in state transitions of high-mass X-ray binaries
Astronomy & Astrophysics, 2015
Aims. We have developed a new code for the three-dimensional time-dependent raditation hydrodynamic simulation of the stellar wind in interacting binaries to improve models of accretion in high-mass X-ray binaries and to quantitatively clarify the observed variability of these objects. We used the code to test the influence of various parameters on the structure and properties of circumstellar matter. Methods. Our code takes into account acceleration of the wind due to the Roche effective potential, Coriolis force, gas pressure, and (CAK-) radiative pressure in the lines and continuum of the supergiant radiation field that is modulated by its gravity darkening and by the photo-ionization caused by X-ray radiation from the compact companion. The parameters of Cygnus X-1 were used to test the properties of our model. Results. Both two-and three-dimensional numerical simulations show that the Coriolis force substantially influences the mass loss and consequently the accretion rate onto the compact companion. The gravitational field of the compact companion focuses the stellar wind, which leads to the formation of a curved cone-like gaseous tail behind the companion. The changes of X-ray photo-ionization of the wind material during X-ray spectral-state transitions significantly influence the wind structure and offer an explanation of the variability of Cygnus X-1 in optical observations (the Hα emission).
Monthly Notices of the Royal Astronomical Society, 2010
The X-ray emission from the wind-wind collision in short-period massive O+O-star binaries is investigated. The emission is calculated from three-dimensional hydrodynamical models which incorporate gravity, the driving of the winds, orbital motion of the stars, and radiative cooling of the shocked plasma. Changes in the amount of stellar occultation and circumstellar attenuation introduce phase-dependent X-ray variability in systems with circular orbits, while strong variations in the intrinsic emission also occur in systems with eccentric orbits. The X-ray emission in eccentric systems can display strong hysteresis, with the emission softer after periastron than at corresponding orbital phases prior to periastron, reflecting the physical state of the shocked plasma at these times.