An Orientation-dependent Hydrogen Bonding Potential Improves Prediction of Specificity and Structure for Proteins and Protein–Protein Complexes (original) (raw)
Related papers
An improved hydrogen bond potential: impact on medium resolution protein structures
Protein science : a publication of the Protein Society, 2002
A new semi-empirical force field has been developed to describe hydrogen-bonding interactions with a directional component. The hydrogen bond potential supports two alternative target angles, motivated by the observation that carbonyl hydrogen bond acceptor angles have a bimodal distribution. It has been implemented as a module for a macromolecular refinement package to be combined with other force field terms in the stereochemically restrained refinement of macromolecules. The parameters for the hydrogen bond potential were optimized to best fit crystallographic data from a number of protein structures. Refinement of medium-resolution structures with this additional restraint leads to improved structure, reducing both the free R-factor and over-fitting. However, the improvement is seen only when stringent hydrogen bond selection criteria are used. These findings highlight common misconceptions about hydrogen bonding in proteins, and provide explanations for why the explicit hydroge...
Protein structure prediction: Do hydrogen bonding and water-mediated interactions suffice?
Methods, 2010
The many-body physics of hydrogen bond formation in alpha-helices of globular proteins was investigated using a simple physics-based model. Specifically, a contextsensitive hydrogen bond potential, which depends on residue identity and degree of solvent exposure, was used in the framework of the Associated Memory Hamiltonian codes developed previously but without using local sequence structure matches ("memories"). Molecular dynamics simulations employing the energy function using the context-sensitive hydrogen bond potential alone (the "amnesiac" model) were used to generate low energy structures for three alpha-helical test proteins. The resulting structures were compared to both the X-ray crystal structures of the test proteins and the results obtained using the full Associated Memory Hamiltonian previously used. Results show that the amnesiac Hamiltonian was able to generate structures with reasonably high structural similarity (Q ∼ 0.4) to that of the native protein but only with the use of predicted secondary structure information encoding local steric signals. Low energy structures obtained using the amnesiac Hamiltonian without any a priori secondary structure information had considerably less similarity to the native protein structures (Q ∼ 0.3). Both sets of results utilizing the amnesiac Hamiltonian are poorer than when local-sequence structure matches are used.
Hydrogen Bonding and Molecular Surface Shape Complementarity as a Basis for Protein Docking
Journal of Molecular Biology, 1996
A geometric docking algorithm based upon correlation analysis for GBF (Gesellschaft für quantification of geometric complementarity between protein molecular Biotechnologische Forschung) Abt., Molekulare surfaces in close interfacial contact has been developed by a detailed Strukturforschung optimization of the conformational search of the algorithm. In order to reduce the entire conformation space search required by the method a Mascheroder Weg 1, D-38124 physico-chemical pre-filter of conformation space has been developed Braunschweig, Germany based upon the a priori assumption that two or more intermolecular hydrogen bonds are intrinsic to the mechanism of binding within protein complexes. Donor sites are defined spatially and directionally by the positions of explicitly calculated donor hydrogen atoms, and the vector space within a defined range about the donor atom-hydrogen atom bond vector. Acceptor sites are represented spatially and directionally by the van der Waals molecular surface points having normal vectors within a predefined range of vector space about the acceptor atom covalent bond vector(s). Geometric conditions necessary for the simultaneous hydrogen bonding interaction between both sites of functionally congruent hydrogen bonding site pairs, located on the individual proteins, are then tested on the basis of a transformation invariant parameterization of the site pair spatial and directional properties. Sterically acceptable conformations defined by interaction of functionally, spatially, and directionally compatable site pairs are then refined to a maximum contact of complementary contact surfaces using the simplex method for the angular search and correlation techniques for the translational search. The utility of the spatial and directional properties of hydrogen bonding donor and acceptor sites for the identification of candidate docking conformations is demonstrated by the reliable preliminary reduction of conformation space, the improved geometric ranking of the minimum RMS conformations of some complexes and the overall reduction of CPU time obtained.
Protein Structures and Complexes: What they Reveal about the Interactions that Stabilize them
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1993
The rapid increase in the number of high-quality protein structures provides an expanding knowledge resource about interactions involved in stabilizing protein three-dimensional structures and the complexes they form with other molecules. In this paper we first review the results of some recent analyses of protein structure, including restrictions on local conformation, and a study of the geometry of hydrogen bonds. Then we consider how such empirical data can be used as a test bed for energy calculations, by using the observed spatial distributions of side chain/atom interactions to assess three different methods for modelling atomic interactions in proteins. We have also derived a new empirical solvation potential which aims to reproduce the hydrophobic effect. To conclude we address the problem of molecular recognition and consider what we can deduce about the interactions involved in the binding of peptides to proteins.
The redesign of protein−protein interactions is a stringent test of our understanding of molecular recognition and specificity. Previously we engineered a modest specificity switch into the colicin E7 DNase−Im7 immunity protein complex by identifying mutations that are disruptive in the native complex, but can be compensated by mutations on the interacting partner. Here we extend the approach by systematically sampling alternate rigid body orientations to optimize the interactions in a binding mode specific manner. Using this protocol we designed a de novo hydrogen bond network at the DNase−immunity protein interface and confirmed the design with X-ray crystallographic analysis. Subsequent design of the second shell of interactions guided by insights from the crystal structure on tightly bound water molecules, conformational strain, and packing defects yielded new binding partners that exhibited specificities of at least 300-fold between the cognate and the non-cognate complexes. This multi-step approach should be applicable to the design of polar protein−protein interactions and contribute to the re-engineering of regulatory networks mediated by protein−protein interactions.
International Journal of Molecular Sciences
Hydrogen bonds (HB)s are the most abundant motifs in biological systems. They play a key role in determining protein–ligand binding affinity and selectivity. We designed two pharmaceutically beneficial HB databases, database A including ca. 12,000 protein–ligand complexes with ca. 22,000 HBs and their geometries, and database B including ca. 400 protein–ligand complexes with ca. 2200 HBs, their geometries, and bond strengths determined via our local vibrational mode analysis. We identified seven major HB patterns, which can be utilized as a de novo QSAR model to predict the binding affinity for a specific protein–ligand complex. Glycine was reported as the most abundant amino acid residue in both donor and acceptor profiles, and N–H⋯O was the most frequent HB type found in database A. HBs were preferred to be in the linear range, and linear HBs were identified as the strongest. HBs with HB angles in the range of 100–110°, typically forming intramolecular five-membered ring structure...
Bioinformatics, 2017
Motivation: The characterization of the protein-protein association mechanisms is crucial to understanding how biological processes occur. It has been previously shown that the early formation of non-specific encounters enhances the realization of the stereospecific (i.e. native) complex by reducing the dimensionality of the search process. The association rate for the formation of such complex plays a crucial role in the cell biology and depends on how the partners diffuse to be close to each other. Predicting the binding free energy of proteins provides new opportunities to modulate and control protein-protein interactions. However, existing methods require the 3D structure of the complex to predict its affinity, severely limiting their application to interactions with known structures. Results: We present a new approach that relies on the unbound protein structures and protein docking to predict protein-protein binding affinities. Through the study of the docking space (i.e. decoys), the method predicts the binding affinity of the query proteins when the actual structure of the complex itself is unknown. We tested our approach on a set of globular and soluble proteins of the newest affinity benchmark, obtaining accuracy values comparable to other state-of-art methods: a 0.4 correlation coefficient between the experimental and predicted values of DG and an error < 3 Kcal/mol.
Water-mediated hydrogen bonds play critical roles at protein-protein and proteinnucleic acid interfaces, and the interactions formed by discrete water molecules cannot be captured using continuum solvent models. We describe a simple model for the energetics of water-mediated hydrogen bonds, and show that, together with knowledge of the positions of buried water molecules observed in X-ray crystal structures, the model improves the prediction of free-energy changes upon mutation at proteinprotein interfaces, and the recovery of native amino acid sequences in protein interface design calculations. We then describe a "solvated rotamer" approach to efficiently predict the positions of water molecules, at protein-protein interfaces and in monomeric proteins, that is compatible with widely used rotamer-based side-chain packing and protein design algorithms. Finally, we examine the extent to which the predicted water molecules can be used to improve prediction of amino acid identities and proteinprotein interface stability, and discuss avenues for overcoming current limitations of the approach. Proteins 2005;58:893-904.
More hydrogen bonds for the (structural) biologist
2001
Why does a given protein structure form and why is this structure stable? These fundamental biochemical questions remain fascinating and challenging problems because the physical bases of the forces that govern protein structure, stability and folding are still not well understood. Now, a general concept of hydrogen bonding in proteins is emerging. This concept involves not only N–H and O–H donor groups, but also C–H, and not only N and O as acceptor groups, but also π-systems.