Inhibition of Nonneuronal �7-Nicotinic Receptor for Lung Cancer Treatment (original) (raw)
Related papers
Inhibition of Nonneuronal α7-Nicotinic Receptor for Lung Cancer Treatment
American Journal of Respiratory and Critical Care Medicine, 2009
Studies strongly suggest that the nicotinic acetylcholine receptors for nicotine (nAChRs) play a significant role in lung cancer predisposition and natural history. The nAChR alpha7 subunit has been found to be pivotal in the control of nicotine-induced lung cancer development and in growth signal transduction induced by nicotine binding to nAChRs. To investigate the anticancer effects of alpha7-nAChR antagonists. (1) To check the correlation between alpha7-nAChR presence and alpha-cobratoxin (alpha-CbT) sensitivity, binding experiments were performed in various normal human cells, lung cancer cell lines, and primary tumoral cells; (2) to demonstrate that alpha-CbT might be an efficient adjuvant therapy for non-small cell lung cancer (NSCLC) we expanded our previous observations to a panel of NSCLCs of various subtypes orthotopically grafted on nonobese diabetic/severe combined immunodeficient mice; (3) to gain insight into the mechanism of alpha-CbT-induced tumor reduction, the cells obtained after enzymatic digestion of tumors were analyzed for procaspase-9, Bax, Bad, and Bcl-X(L) protein; and (4) Snail/E-cadherin expression was evaluated to acquire information about the chemoresistance of cancer cells to alpha-CbT. We report herein the results of an experimental strategy aimed at investigating the antitumor effects of a powerful alpha7-nAChR antagonist, alpha-CbT, in an in vivo setting set to mimic the clinical setting of lung cancer; in addition, a possible explanation for alpha-CbT selectivity toward cancer cells is presented. We report the prolonged survival of alpha-CbT-treated animals in our mouse model of NSCLC, which is most likely the result of multiple mechanisms, including various antiproliferative and antiangiogenic effects.
International Journal of Cancer, 2008
Nicotinic acetylcholine receptors (nAChR) are expressed on normal bronchial epithelial and nonsmall cell lung cancer (NSCLC) cells and are involved in cell growth regulation. Nicotine induced cell proliferation. The purpose of this study was to determine if interruption of autocrine nicotinic cholinergic signaling might inhibit A549 NSCLC cell growth. For this purpose α-Cobratoxin (α-CbT), a high affinity α7-nAChR antagonist was studied. Cell growth decrease was evaluated by Clonogenic and MTT assays. Evidence of apoptosis was identified staining cell with Annexin-V/PI. Characterization of the basal NF-κB activity was done using the Trans-AM NF-κB assay colorimetric kit. “In vivo” antitumour activity was evaluated in orthotopically transplanted nude mice monitored by In vivo Imaging System technology. α-CbT caused concentration-dependent cell growth decrease, mitochondrial apoptosis caspases-9 and 3-dependent, but caspase-2 and p53-independent and down-regulation of basal high levels of activated NF-κB. α-CbT treatment determines a significant reduction of tumor growth in nude mice orthotopically engrafted with A549-luciferase cells (4.6% of living cells vs. 31% in untreated mice). No sign of toxicity was reported related to treatment. These findings suggest that α7-nAChR antagonists namely α-CbT may be useful adjuvant for treatment of NSCLC and potentially other cancers. © 2007 Wiley-Liss, Inc.
Marine Drugs
The alkylpyridinium polymer APS8, a potent antagonist of α7 nicotinic acetylcholine receptors (nAChRs), selectively induces apoptosis in non-small cell lung cancer cells but not in normal lung fibroblasts. To explore the potential therapeutic value of APS8 for at least certain types of lung cancer, we determined its systemic and organ-specific toxicity in mice, evaluated its antitumor activity against adenocarcinoma xenograft models, and examined the in-vitro mechanisms of APS8 in terms of apoptosis, cytotoxicity, and viability. We also measured Ca2+ influx into cells, and evaluated the effects of APS8 on Ca2+ uptake while siRNA silencing of the gene for α7 nAChRs, CHRNA7. APS8 was not toxic to mice up to 5 mg/kg i.v., and no significant histological changes were observed in mice that survived APS8 treatment. Repetitive intratumoral injections of APS8 (4 mg/kg) significantly delayed growth of A549 cell tumors, and generally prevented regrowth of tumors, but were less effective in re...
British journal of pharmacology, 2017
Tobacco smoke contains many classes of carcinogens and although nicotine is unable to initiate tumorigenesis in humans and rodents, it promotes tumour growth and metastasis in lung tumours by acting on neuronal nicotinic acetylcholine receptors (nAChRs). The aim of this study was to identify molecularly, biochemically and pharmacologically which nAChR subtypes are expressed and functionally activated by nicotine in lung cancer cell lines. We used A549 and H1975 adenocarcinoma cell lines derived from lung tumour to test the in vitro effects of nicotine, and nAChR subtype-specific peptides and compounds. The two adenocarcinoma cell lines express distinctive nAChR subtypes, and this affects their nicotine-induced proliferation. In A549 cells, nAChRs containing the α7 or α9 subunits not only regulate nicotine-induced cell proliferation but also the activation of the AKT and ERK pathways. Blocking these nAChRs by means of subtype-specific peptides, or silencing their expression by means ...
α7-Nicotinic receptor antagonists at the beginning of a clinical era for NSCLC and Mesothelioma?
Drug Discovery Today, 2009
Of the human solid cancers, Non-Small Cell Lung Cancer (NSCLC) and Malignant Pleural Mesothelioma (MPM) display a natural history supporting the concept that they develop from multiple preneoplastic pathways. Recently, new evidence suggested that nicotinic Acetylcholine Receptors (nAChRs) play a significant role in lung cancer predisposition and natural history. This review is based on some translational research aimed at evaluating the potential therapeutic effect of nAChR antagonists on NSCLC and MPM. The background and rationale of this approach are based on the experimental observations that: (a) NSCLC and MPM cells express nAChRs and (b) the activation of these receptors by agonists, namely nicotine, inhibits apoptosis, whereas receptor antagonists have a pro-apoptotic effect.
The interaction of quaternary reversible acetylcholinesterase inhibitors with the nicotinic receptor
Physiological research / Academia Scientiarum Bohemoslovaca, 2014
Acetylcholinesterase inhibitors (AChEIs) are used in the treatment of myasthenia gravis (MG). We investigated the effects of AChEIs on peripheral nicotinic receptors (nAChR), which play a crucial role in the treatment of MG symptoms. The positive modulation of those receptors by AChE inhibitors could have an added value to the anti-AChE activity and might be useful in the therapy of MG. Furthermore, to estimate the potential drawbacks of the compounds, cytotoxicity has been assessed on various cell lines. The whole-cell mode of the patch-clamp method was employed. The experiments were performed on medulloblastoma/rhabdomyosarcoma cell line TE671 expressing human embryonic muscle-like receptor with subunits alpha2betagammadelta. The effect of the compounds on cell viability was measured by standard MTT assay (Sigma Aldrich) on ACHN (renal cell adenocarcinoma), HeLa (immortal cell line derived from a cervical carcinoma), HEPG2 (hepatocellular carcinoma) and BJ (skin fibroblasts) cell ...