The HMG box-containing nucleolar transcription factor UBF interacts with a specific subunit of RNA polymerase I (original) (raw)
1994, The EMBO journal
The mammalian transcription activator protein UBF contains five tandemly repeated HMG homology domains which are required for DNA binding. We have used highly purified RNA polymerase I (Pol I) and upstream binding factor (UBF) and investigated whether these two proteins interact in solution. We show by a variety of different experimental approaches, such as immunoprecipitation, glycerol gradient sedimentation, affinity chromatography and protein blotting, that UBF physically associates with Pol I. Mutational analysis reveals that the HMG boxes play an important role in this specific interaction. UBF binds to mouse and yeast Pol I, demonstrating that the interaction of UBF with Pol I has been conserved during evolution. Interestingly, in both species one Pol I-specific subunit (34.5 kDa in yeast and 62 kDa in mouse) was recognized by UBF. No specific interaction was observed with Pol II. Unexpectedly, UBF was found to associate also with a unique subunit of yeast Pol III. This appare...
Related papers
Upstream Binding Factor (UBF) is important for activation of ribosomal RNA transcription and belongs to a family of proteins containing nucleic acid binding domains, termed HMG-boxes, with similarity to High Mobility Group (HMG) chromosomal proteins. Proteins in this family can be sequence-specific or highly sequence-tolerant binding proteins. We show that Xenopus UBF can be classified among the sequence-tolerant class. Methylation interference assays using enhancer DNA probes failed to reveal any critical nucleotides required for UBF binding. Selection by UBF of optimal binding sites among a population of enhancer oligonucleotides with randomized sequences also failed to reveal any consensus sequence. The minor groove specific drugs chromomycin A3, distamycin A and actinomycin D competed against UBF for enhancer binding, suggesting that UBF, like other HMG-box proteins, probably interacts with the minor groove. UBF also shares with other HMG box proteins the ability to bind synthetic cruciform DNA. However, UBF appears different from other HMG-box proteins in that it can bind both RNA (tRNA) and DNA. The sequence-tolerant nature of UBF-nucleic acid interactions may accommodate the rapid evolution of ribosomal RNA gene sequences.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.