Synthesis in Vibrio cholerae and secretion of hepatitis B virus antigens fused to Escherichia coli heat-labile enterotoxin subunit B (original) (raw)

Synthesis of hybrid molecules between heat-labile enterotoxin and cholera toxin B subunits: potential for use in a broad-spectrum vaccine

Infection and Immunity, 1996

Three variants of the cholera toxin B subunit (CTB) were generated by site-specific mutagenesis in which regions of the mature protein were altered to the composition found at the corresponding positions of the closely related B subunit of the heat-labile enterotoxin of enterotoxigenic Escherichia coli (LTB). The mutant proteins were expressed in Vibrio cholerae and purified from the growth medium. In the first of the mutant proteins, the first 25 amino acids corresponded to the sequence found in LTB, and in the second, changes were made at positions 94 and 95 of the mature protein. The third mutant protein combined the changes made in the first two. Analysis of the immunological properties of these novel proteins by using monoclonal antibodies and absorbed polyclonal antiserum demonstrated that they had acquired LTB-specific epitopes. Immunizations with the mutant proteins resulted in antisera containing LTB-specific as well as CTB-specific and cross-reactive antibodies. The sera w...

Production of Pentameric Cholera Toxin B Subunit in Escherichia coli

Avicenna Journal of Medical Biotechnology, 2012

Cholera toxin B subunit (CTB) has been extensively studied as an immunogen, adjuvant, and inducer of oral tolerance in many investigations. Production of CTB has been carried out in the bacterial, plant, insect and yeast expression systems. In this study the expression of the CTB containing a 6XHis-tagged was performed by Escherichia coli (E.coli) M15. The yield of purified pentameric recombinant CTB was about 1 mg/l. Western blot analysis demonstrated that the recombinant CTB was antigenically active. In addition, GM1-ganglioside ELISA showed that recombinant CTB binds to GM1-gangelioside receptor, confirming disulfide bond formation and proper folding of the recombinant protein in E.coli. Overall, in regard to the vast applications of CTB in medicine, this bacterial expression system will be a fast, cost-effective and simple system for production of pentameric CTB and CTB conjugated proteins.

In Vitro Assembly of Novel Cholera Toxin-like Complexes

Analytical Biochemistry, 2001

Cholera toxin (CT) is responsible for the major pathological features of cholera, but in addition to its cytotoxic properties, CT is a potent mucosal adjuvant when coadministered with antigens at mucosal sites. Discovery of CT adjuvanticity has prompted the generation of CT chimeras with reduced toxicity and improved efficiency for antigen presentation at mucosal sites. To date, chimeric forms of CT have been produced in bacterial strains by coexpressing the CT B subunit and a chimeric form of the CT A subunit consisting of a target protein antigen fused with the A2 polypeptide of CT. In this study, a chimeric protein consisting of green fluorescent protein (GFP) fused with polypeptide A2 was generated to investigate the feasibility of assembling CT holotoxin-like complexes in vitro. The assembly of such holotoxin-like complexes would expand the variety of antigenic compounds that could be incorporated into CT-based vaccines. In this study, GFP-A2/CTB complexes could be generated in vitro using a stepwise denaturation-renaturation process. These findings suggest that it is possible to generate novel mucosal vaccines consisting of macromolecules that are chemically coupled to polypeptide A2 and reconstituted into CT-like complexes in vitro.

Fine Epitope Mapping of the Vibrio cholera Toxins A, B, and P and an ELISA Assay

Oral immunization with the choleric toxin (CT) elicits a high level of protection against its enterotoxin activities and can control cholera in endemic settings. However, the complete B-cell epitope map of the CT responsible for protection remains to be clarified. Here, we have mapped the B-cell linear epitopes of the three chains of the CT protein (CTP) prepared by Spot synthesis. The immunoreactivity of sera from mice immunized with an oral, inactivated vaccine (Schankol†™) was measured against membrane-bound peptides for mapping. Results: Eighteen IgG epitopes were identified; eight in the CTA, three in the CTB, and seven in the protein P. Three epitopes, TQTGFVRHDDGYVST (aa 66-77, Vc/TxA-3), KNGAIFQVE VPGSQN (aa 64-78, Vc/TxB-11), and LNDEHK (aa 90-95, Vc/TxP-16), were chosen to synthesize a multiple antigen peptide that was used to coat ELISA plates to screen immunized mouse sera as a test for an in vitro diagnostics for cholera. Conclusion: Vaccination with inactive CT-generat...

Synthesis of cholera toxin B subunit gene: cloning and expression of a functional 6XHis-tagged protein in Escherichia coli

Protein Expression and Purification, 2002

Cholera toxin B subunit (CTB) has been extensively studied as immunogen, adjuvant, and oral tolerance inductor depending on the antigen conjugated or coadministered. It has been already expressed in several bacterial and yeast systems. In this study, we synthesized a versatile gene coding a 6XHis-tagged CTB (359 bp). The sequence was designed according to codon usage of Escherichia coli, Lactobacillus casei, and Salmonella typhimurium. The gene assembly was based on a polymerase chain reaction, in which the polymerase extends DNA fragments from a pool of overlapping oligonucleotides. The synthetic gene was amplified, cloned, and expressed in E. coli in an insoluble form, reaching levels about 13 mg of purified active pentameric rCTB per liter of induced culture. Western blot and ELISA analyses showed that recombinant CTB is strongly and specifically recognized by polyclonal antibodies against the cholera toxin. The ability to form the functional pentamers was observed in cell culture by the inhibition of cholera toxin activity on Y1 adrenal cells in the presence of recombinant CTB. The 6XHis-tagged CTB provides a simple way to obtain functional CTB through Ni 2þ -charged resin after refolding and also free of possible CTA contaminants as in the case of CTB obtained from Vibrio cholerae cultures. Ó

Production of cholera toxin subunit B by a mutant strain of Vibrio cholerae

Applied Microbiology and Biotechnology, 1990

The B subunit (CTB) of cholera toxin (CT) can be used as a carrier protein for conjugate vaccines designed to elicit antipolysaccharide antibodies. A defined medium, AGM4, was designed to grow a highproducing mutant of Vibrio cholerae expressing only the B subunit of CT: V. cholerae 0395-NI. AGM4 contains four amino acids, asparagine, glutamic acid, arginine and serine, salts and a trace element solution. The carbon source is glucose. The fermentations performed in AGM4 indicated that CTB production paralleled the growth of the organism but that there was a maximal release of CTB during the stationary phase. There was a clear optimum of productivity at pH 8.0 and 30 ° C. The pH had an influence on CTB production and not only on its release. Analysis of the amino acids present in the medium showed a correlation between their consumption rates and CTB productivity.

B-Cell Epitope Mapping of the Vibrio cholera Toxins A, B, and P and an ELISA Assay

International Journal of Molecular Sciences

Oral immunization with the choleric toxin (CT) elicits a high level of protection against its enterotoxin activities and can control cholera in endemic settings. However, the complete B-cell epitope map of the CT that is responsible for protection remains to be clarified. A library of one-hundred, twenty-two 15-mer peptides covering the entire sequence of the three chains of the CT protein (CTP) was prepared by SPOT synthesis. The immunoreactivity of membrane-bound peptides with sera from mice vaccinated with an oral inactivated vaccine (Schankol™) allowed the mapping of continuous B-cell epitopes, topological studies, multi-antigen peptide (MAP) synthesis, and Enzyme-Linked Immunosorbent Assay (ELISA) development. Eighteen IgG epitopes were identified; eight in the CTA, three in the CTB, and seven in the protein P. Three V. cholera specific epitopes, Vc/TxA-3, Vc/TxB-11, and Vc/TxP-16, were synthesized as MAP4 and used to coat ELISA plates in order to screen immunized mouse sera. S...