Effects of UV-B radiation on the structural and physiological diversity of bacterioneuston and bacterioplankton (original) (raw)
Related papers
Aquatic Sciences, 2011
The effects of ultraviolet-B (0.4 W m -2 ) radiation on the abundance, diversity and heterotrophic metabolism of bacterioneuston and bacterioplankton communities from Ria de Aveiro (Portugal) were assessed and compared to those of freshwater communities from Lake Vela (Portugal) in microcosm experiments. Exposure to 9 h of artificial ultraviolet radiation (UVR) led to 24-33% reduction in bacterial abundance and up to a 70% decrease in bacterial diversity. Maximum extracellular enzyme activity and monomer incorporation rates were reduced by 16-90% and 80-100%, respectively. Recovery of bacterial activity during post-UV dark incubations ranged from 10 to 100% for extracellular enzyme activity and 40% for monomer incorporation rates. In general, the heterotrophic activity of bacterioneuston was more inhibited by UVR than that of bacterioplankton. However, DGGE profiles revealed greater UVR-induced reductions in the diversity of bacterioplankton compared to bacterioneuston. The similarity between bacterioneuston and bacterioplankton communities in samples collected at early morning was lower than at noon (pre-exposed communities) and increased upon experimental irradiation, possibly indicating selection for UV-resistant bacteria. The observation that UV exposure resulted in enhanced reduction of bacterioneuston activity, but a lower reduction in bacterial diversity accompanied by enhanced dark recovery potential compared to bacterioplankton, indicates re-directioning of bacterioneuston metabolism towards stress defence/recovery strategies rather than the sustained heterotrophic metabolism. Our results indicate that UVR can significantly decrease the abundance, diversity and activity of bacteria inhabiting the surface and sub-surface layers of freshwater and estuarine systems with potentially important impacts on the biogeochemical cycles in these environments.
Letters in applied microbiology, 2011
Aims: To assess the variability in UV-B (280–320 nm) sensitivity of selected bacterial isolates from the surface microlayer and underlying water of the Ria de Aveiro (Portugal) estuary and their ability to recover from previous UV-induced stress.Methods and Results: Bacterial suspensions were exposed to UV-B radiation (3·3 W m−2). Effects on culturability and activity were assessed from colony counts and 3H-leucine incorporation rates, respectively. Among the tested isolates, wide variability in UV-B-induced inhibition of culturability (37·4–99·3%) and activity (36·0–98·0%) was observed. Incubation of UV-B-irradiated suspensions under reactivating regimes (UV-A, 3·65 W m−2; photosynthetic active radiation, 40 W m−2; dark) also revealed diversity in the extent of recovery from UV-B stress. Trends of enhanced resistance of culturability (up to 15·0%) and enhanced recovery in activity (up to 52·0%) were observed in bacterioneuston isolates.Conclusions: Bacterioneuston isolates were less sensitive and recovered more rapidly from UV-B stress than bacterioplankton isolates, showing enhanced reduction in their metabolism during the irradiation period and decreased culturability during the recovery process compared to bacterioplankton.Significance and Impact of the Study: UV exposure can affect the diversity and activity of microbial communities by selecting UV-resistant strains and alter their metabolic activity towards protective strategies.
Microbial ecology, 2001
With the continuing increase of ultraviolet-B radiation (UVBR: 280-320 nm) fluxes toward the Earth's surface, there is concern regarding a possible negative impact on heterotrophic bacterioplankton. The effects of enhanced UVBR on a natural bacterioplankton community were studied during a 7-day experiment conducted in mesocosms (1500 L). Four light regimes were tested: natural light, 280 to 313 nm excluded UVBR, and two levels of UVBR enhancement. During the first 3 days of the experiment characterized by high inorganic nutrient concentrations (nitrates > 1 µmol L-1 and ammonium > 0.1 µmol L-l), UVBR had no effect on both bacterial abundances and activities. From day 4 to the end of the experiment, nitrate concentrations remained low (
Role of ultraviolet-B radiation on bacterioplankton and the availability of dissolved organic matter
Plant Ecology, 1997
Attenuation of ultraviolet (UV)-radiation into the water column is highly correlated with the concentration of the dissolved organic matter (DOM). Thus UV penetrates deeper into marine waters than into freshwater systems. DOM is efficiently cleaved by solar surface radiation levels consuming more oxygen than bacterial metabolism. This photolytically cleaved DOM exhibits higher absorbance ratios (250/365 nm) than untreated DOM. Natural bacterioplankton reach higher abundance if inoculated in previously solar-exposed DOM than in untreated DOM; during bacterial growth the absorbance ratio declines steadily indicating the utilization of the photolytically cleaved DOM. On the other hand, bacterioplankton are greatly reduced in their activity if exposed to surface solar radiation levels. Photoenzymatic repair of DNA induced by UV-A radiation, however, leads to an efficient recovery of bacterial activity once the UV-B stress is released. Turbulent mixing of the upper layers of the water column leads to a continuous alteration of the UV exposure regime. Close to the surface, bacteria and DOM are exposed to high levels of UV-B leading to a reduction in bacterial activity and to photolysis of DOM. Once mixed into deeper layers where UV-B is attenuated, but sufficient UV-A is remaining to allow photoenzymatic repair, the photolytically cleaved DOM is efficiently taken up by bacterioplankton leading to even higher bacterial activity than prior to the exposure. Thus, the overall effect of UV on bacterioplankton is actually an enhancement of bacterial activity despite their lack of protective pigments.
FEMS microbiology ecology, 2012
Bacteria from the surface microlayer (bacterioneuston) and underlying waters (bacterioplankton) were isolated upon exposure to UV-B radiation, and their individual UV sensitivity in terms of CFU numbers, activity (leucine and thymidine incorporation), sole-carbon source use profiles, repair potential (light-dependent and independent), and photoadaptation potential, under different physiological conditions, was compared. Colony counts were 11.5–16.2% more reduced by UV-B exposure in bacterioplankton isolates (P < 0.05). Inhibition of leucine incorporation in bacterioneuston isolates was 10.9–11.5% higher than in bacterioplankton (P < 0.05). These effects were accompanied by a shift in sole-carbon source use profiles, assessed with Biolog®EcoPlates, with a reduction in consumption of amines and amino acids and increased use of polymers, particularly in bacterioneuston isolates. Recovery under starvation was generally enhanced compared with nourished conditions, especially in bacterioneuston isolates. Overall, only insignificant increases in the induction of antibiotic resistant mutant phenotypes (RifR and NalR) were observed. In general, a potential for photoadaptation could not be detected among the tested isolates. These results indicate that UV effects on bacteria are influenced by their physiological condition and are accompanied by a shift in metabolic profiles, more significant in bacterioneuston isolates, suggesting the presence of bacterial strains adapted to high UV levels in the SML.
Ambient Solar Radiation-Induced Photodamage in Marine Bacterioplankton
Photochemistry and Photobiology, 1996
There has been much recent concern about the effects of increased UV radiation at certain locations on the earth's surface. There have been extensive studies of ultraviolet radiation effects on phytoplankton and primary production, yet the effects of UVB upon bacterioplankton have been largely overlooked. Bacteria play a central role in the cycling of nutrients and energy flow to higher trophic levels, serving as both mineralizers and secondary producers that are consumed by higher organisms. We have begun to investigate the induction of DNA photodamage by UVB in marine planktonic communities using a highly specific radioimmunoassay to measure cyclobutane pyrimidine dimers in samples collected from the northern Gulf of Mexico. DNA damage in the bacterioplankton size-fraction (C0.8 pm) was greater than in the larger eukaryotic size fraction (>0.8 pm <120 pm) in 9 of 10 samples. Die1 patterns of dimer accumulation and repair were observed in surface waters over a 48 h period in the bacterioplankton size fraction and in the larger eukaryotic plankton size fraction. Depth profiles of DNA damage in the bacterioplankton size fraction appear to be dependent on surface water mixing. Damage was greatest in surface waters, decreased with depth and could be detected to 10 m in calm seas. No net accumulation of damage was observed in moderate seas, even at the surface. Solar radiation was found to inhibit significantly both jH-thymidine and 14C-leucine incorporation. Ultraviolet B was responsible for approximately half of the total inhibition of JH-thymidine incorporation, UVA contributing the other half of the inhibition. The vast majority of 14C-leucine incorporation inhibition was due to UVB, suggesting that protein synthesis is less affected by UVA. The results demonstrate that direct measures of DNA damage can be made of indigenous planktonic communities and that bacterioplankton are highly susceptible to UVB damage and may serve as a more sensitive indicator of UVR stress than other microorganisms.
Impact of solar radiation on bacterioplankton in Laguna Vilama, a hypersaline Andean lake (4650 m
Journal of Geophysical Research, 2009
1] Laguna Vilama is a hypersaline Lake located at 4660 m altitude in the northwest of Argentina high up in the Andean Puna. The impact of ultraviolet (UV) radiation on bacterioplankton was studied by collecting samples at different times of the day. Molecular analysis (DGGE) showed that the bacterioplankton community is characterized by Gamma-proteobacteria (Halomonas sp., Marinobacter sp.), Alpha-proteobacteria (Roseobacter sp.), HGC (Agrococcus jenensis and an uncultured bacterium), and CFB (uncultured Bacteroidetes). During the day, minor modifications in bacterial diversity such as intensification of Bacteroidetes' signal and an emergence of Gamma-proteobacteria (Marinobacter flavimaris) were observed after solar exposure. DNA damage, measured as an accumulation of Cyclobutane Pyrimidine Dimers (CPDs), in bacterioplankton and naked DNA increased from 100 CPDs MB À1 at 1200 local time (LT) to 300 CPDs MB À1 at 1600 LT, and from 80 CPDs MB À1 at 1200 LT to 640 CPDs MB À1 at 1600 LT, respectively. In addition, pure cultures of Pseudomonas sp. V1 and Brachybacterium sp. V5, two bacteria previously isolated from this environment, were exposed simultaneously with the community, and viability of both strains diminished after solar exposure. No CPD accumulation was observed in either of the exposed cultures, but an increase in mutagenesis was detected in V5. Of both strains only Brachybacterium sp. V5 showed CPD accumulation in naked DNA. These results suggest that the bacterioplankton community is well adapted to this highly solar irradiated environment showing little accumulation of CPDs and few changes in the community composition. They also demonstrate that these microorganisms contain efficient mechanisms against UV damage.
Journal of Experimental Marine Biology and Ecology, 2007
In upwelling ecosystems, such as the Humboldt Current system (HCS) off Concepción, the effects of solar radiation on bacterioplankton incorporation rates have been related to previous light acclimation and responses to irradiance. In this paper, we study the daily effect of Photosynthetic Active Radiation (PAR, 400-700 nm) and ultraviolet radiation UVR (280-400 nm) on bacterial secondary production (BSP). We also considered the DNA damage-repair response to solar radiation stress by the induction of cyclobutane pyrimidine dimers (CPDs). Experiments were conducted with natural bacterioplankton assemblages (0.2-0.7 μm) collected off Concepción (36°S), during the austral Spring, October-November, 2004. Surface (0.5 m) and subsurface (80 m) bacterioplankton samples were exposed to different solar radiation treatments for 5-20 h. BSP was estimated by 14 C-leucine and 3 H-thymidine incorporation at several time intervals, whereas CPDs accumulation was assessed using immunoassay techniques. During high irradiance periods, BSP was mainly affected by PAR in both surface and subsurface assemblages and, to a lesser, but significant (Tukey b 0.05) extent, by UV-A (320-400 nm) and UV-B (280-320 nm) radiation. Maximum inhibition of BSP in surface waters was 78%; growth rates (μ) and bacterial growth efficiency (BGE) were also low (78% and 66% respectively). Subsurface water assemblages, on the contrary, showed a ∼ 25 fold enhancement of BSP, μ, and BGE. Both types of assemblages had a rapid CPDs accumulation (maximum 60 CPDs Mb − 1 ) during high irradiance periods. Recovery of BSP inhibition and DNA damage in surface bacteria was total after sunset and after the night incubation period, resembling preexposure levels. Despite subsurface BSP enhancement during day-night exposure, residual DNA damage was detected at the end of the experiment (20 CPDs Mb − 1 ) suggesting a chronic DNA damage. Our results represent the worst case scenario (i.e., assemblages receiving surface irradiances as may occur in this upwelling zone) and indicate that surface and subsurface bacterial assemblages in the HCS are both highly sensitive to solar irradiance. However, they showed different responses, with surface bacteria having more effective photorepair mechanisms, and sustaining higher BSP than subsurface assemblages.
Aquatic microbial ecology, 1999
This study focuses on the effects of ultraviolet radiation (UVR) on bacterioplankton. The effect of different parts of the sunlight spectrum on the leucine and thymidine incorporation and on the induction of DNA damage in natural bacterial populations in the coastal Caribbean Sea off Curaqao were investigated. DNA photodamage in microorganisms and biodosimeters was quantified by the number of cyclobutane dimers (thymine dimers). Increasing DNA damage during the day was found when incubated in full surface solar radiation. When UVBR was excluded no DNA damage was observed, indicating that thymine dimers were only formed by UVB radiation. The amount of thymine dimers in the > 0. 8 pm fraction was only one-third of the amount of induced thymine dimers in the <0.8 pm fraction, suggesting that phytoplankton is less sensitive to UV-induced DNA damage than bacterioplankton. Protein and DNA synthesis was inhibited to about 30% of the dark control during the day when exposed to surface solar radiation. In both protein and DNA synthesis a trend was found, with the highest inhibition under full solar radiation, lower inhibition when UVBR was shielded off and the lowest inhibition when UVAR (<375 nm) was also shielded off. The intracellular carbohydrate content of the phytoplankton incubated under full solar radiation was not significantly higher than the dark incubation, while the contents after incubation without UVBR were significantly lngher. The carbohydrate content in the samples incubated without UVBR and UVAR (<375 nm) was a little higher than with only UVBR shielded off. In summary, the results show that in the coastal Caribbean Sea UVBR is responsible for DNA damage in bacterio-and phytoplankton, while protein and DNA synthesis in bacterioplankton was inhibited by UVBR. UVAR and PAR and carbohydrate synthesis in phytoplankton by both UVBR and UVAR.