Disease-associated CAG·CTG triplet repeats expand rapidly in non-dividing mouse cells, but cell cycle arrest is insufficient to drive expansion (original) (raw)

DNA instability in replicating Huntington's disease lymphoblasts

BMC Medical Genetics, 2009

Background The expanded CAG repeat in the Huntington's disease (HD) gene may display tissue-specific variability (e.g. triplet mosaicism) in repeat length, the longest mutations involving mitotic (germ and glial cells) and postmitotic (neurons) cells. What contributes to the triplet mutability underlying the development of HD nevertheless remains unknown. We investigated whether, besides the increased DNA instability documented in postmitotic neurons, possible environmental and genetic mechanisms, related to cell replication, may concur to determine CAG repeat mutability. To test this hypothesis we used, as a model, cultured HD patients' lymphoblasts with various CAG repeat lengths. Results Although most lymphoblastoid cell lines (88%) showed little or no repeat instability even after six or more months culture, in lymphoblasts with large expansion repeats beyond 60 CAG repeats the mutation size and triplet mosaicism always increased during replication, implying that the repeat mutability for highly expanded mutations may quantitatively depend on the triplet expansion size. None of the investigated genetic factors, potentially acting in cis to the mutation, significantly influence the repeat changes. Finally, in our experiments certain drugs controlled triplet expansion in two prone-to-expand HD cell lines carrying large CAG mutations. Conclusion Our data support quantitative evidence that the inherited CAG length of expanded alleles has a major influence on somatic repeat variation. The longest triplet expansions show wide somatic variations and may offer a mechanistic model to study triplet drug-controlled instability and genetic factors influencing it.

Dramatic, expansion-biased, age-dependent, tissue-specific somatic mosaicism in a transgenic mouse model of triplet repeat instability

Human Molecular Genetics, 2000

Myotonic dystrophy type 1 (DM1) is one of a growing number of inherited human diseases whose molecular basis has been implicated as the expansion of a trinucleotide DNA repeat. Expanded disease-associated alleles of >50 CTG repeats are unstable in both the germline and soma. Expansion of the unstable alleles over time and variation of the level of mutation between the somatic tissues of an individual are thought to account at least partially for the tissue specificity and progressive nature of the symptoms. We previously generated a number of transgenic mouse lines containing a large expanded CTG repeat tract that replicated a number of the features of unstable DNA in humans, including frequent sex-specific changes in allele length during intergenerational transmission. Small length change mutations were apparent in the somatic tissues of young mice in all of the lines generated, but the gross instability observed in human DM1 patients was not replicated. We now show that in one of the lines, Dmt-D, spectacular, expansion-biased, tissue-specific instability is observed in older mice. The highest levels of instability were detected in kidney with gains of >500 repeats, representing a tripling of allele length, in some cells. Mosaicism accumulated in an age-dependent manner, but the tissue specificity did not obviously correlate with cell turnover. Such gross somatic mosaicism was not observed in three other lines examined, further emphasizing a role for flanking DNA in modulating repeat stability.

Replication Inhibitors Modulate Instability of an Expanded Trinucleotide Repeat at the Myotonic Dystrophy Type 1 Disease Locus in Human Cells

The American Journal of Human Genetics, 2003

Gene-specific CTG/CAG repeat expansion is associated with at least 14 human diseases, including myotonic dystrophy type 1 (DM1). Most of our understanding of trinucleotide instability is from nonhuman models, which have presented mixed results, supporting replication errors or processes independent of cell division as causes. Nevertheless, the mechanism occurring at the disease loci in patient cells is poorly understood. Using primary fibroblasts derived from a fetus with DM1, we have shown that spontaneous expansion of the diseased (CTG) 216 allele occurred in proliferating cells but not in quiescent cells. Expansions were "synchronous," with mutation frequencies approaching 100%. Furthermore, cells were treated with agents known to alter DNA synthesis but not to directly damage DNA. Inhibiting replication initiation with mimosine had no effect upon instability. Inhibiting both leading-and lagging-strand synthesis with aphidicolin or blocking only lagging strand synthesis with emetine significantly enhanced CTG expansions. It was striking that only the expanded DM1 allele was altered, leaving the normal allele, (CTG) 12 , and other repeat loci unaffected. Standard and small-pool polymerase chain reaction revealed that inhibitors enhanced the magnitude of short expansions in most cells threefold, whereas 11%-25% of cells experienced gains of 122-170 repeats, to sizes of (CTG) 338-(CTG) 386. Similar results were observed for an adult DM1 cell line. Our results support a role for the perturbation of replication fork dynamics in DM1 CTG expansions within patient fibroblasts. This is the first report that repeat-length alterations specific to a disease allele can be modulated by exogenously added compounds.

Mouse tissue culture models of unstable triplet repeats: in vitro selection for larger alleles, mutational expansion bias and tissue specificity, but no association with cell division rates

Human Molecular Genetics, 2001

The expansion of CAG•CTG trinucleotide repeats has been associated with an increasing number of human diseases. Once into the expanded diseaseassociated range, the repeats become dramatically unstable in the germline and also throughout the soma. Instability is expansion-biased, contributing towards the unusual genetics, and most likely the tissue-specificity and progressive nature of the symptoms. Such expansions constitute a unique form of dynamic mutation whose mechanism is poorly understood. It is generally assumed that repeat length changes arise via replication slippage, yet no direct evidence exists to support this hypothesis in a mammalian system. We have previously generated transgenic mouse models of unstable CAG•CTG repeats that reconstitute the dynamic nature of somatic mosaicism observed in humans. We have now used tissues from these mice to establish in vitro cell cultures. Monitoring of repeat stability in these cells has revealed the progressive accumulation of larger alleles as a result of repeat length changes in vitro, as confirmed by single cell cloning. We also observed the selection of cells carrying longer repeats during the first few passages of the cultures and frequent additional selective sweeps at later stages. The highest levels of instability were observed in cultured kidney cells, whereas the transgene remained relatively stable in eye cells and very stable in lung cells, paralleling the previous in vivo observations. No correlation between repeat instability and the cell proliferation rate was found, rejecting a simple association between length change mutations and cell division, and confirming a role for additional cell-type specific factors.

Somatic CTG•CAG repeat instability in a mouse model for myotonic dystrophy type 1 is associated with changes in cell nuclearity and DNA ploidy

BMC Molecular Biology, 2007

Background: Trinucleotide instability is a hallmark of degenerative neurological diseases like Huntington's disease, some forms of spinocerebellar ataxia and myotonic dystrophy type 1 (DM1). To investigate the effect of cell type and cell state on the behavior of the DM1 CTG•CAG repeat, we studied a knock-in mouse model for DM1 at different time points during ageing and followed how repeat fate in cells from liver and pancreas is associated with polyploidization and changes in nuclearity after the onset of terminal differentiation. Results: After separation of liver hepatocytes and pancreatic acinar cells in pools with 2n, 4n or 8n DNA, we analyzed CTG•CAG repeat length variation by resolving PCR products on an automated PAGE system. We observed that somatic CTG•CAG repeat expansion in our DM1 mouse model occurred almost uniquely in the fraction of cells with high cell nuclearity and DNA ploidy and aggravated with aging. Conclusion: Our findings suggest that post-replicative and terminal-differentiation events, coupled to changes in cellular DNA content, form a preconditional state that influences the control of DNA repair or recombination events involved in trinucleotide expansion in liver hepatocytes and pancreatic acinar cells.

The balancing act of DNA repeat expansions

Current Opinion in Genetics & Development, 2013

Expansions of microsatellite DNA repeats contribute to the inheritance of nearly 30 developmental and neurological disorders. Significant progress has been made in elucidating the molecular mechanisms of repeat expansions using various model organisms and mammalian cell culture, and models implicating nearly all DNA transactions such as replication, repair, recombination, and transcription have been proposed. It is likely that different models of repeat expansions are not mutually exclusive and may explain repeat instability for different developmental stages and tissues. This review focuses on the contributions from studies in budding yeast toward unraveling the mechanisms and genetic control of repeat expansions, highlighting similarities and differences of replication models and describing a balancing act hypothesis to account for apparent discrepancies.

Replication-dependent instability at (CTG)•(CAG) repeat hairpins in human cells

Nature Chemical Biology, 2010

Instability of (CTG)•(CAG) microsatellite trinucleotide repeat (TNR) sequences is responsible for more than one dozen neurological or neuromuscular diseases. TNR instability during DNA synthesis is thought to involve slipped strand or hairpin structures in template or nascent DNA strands, although direct evidence for hairpin formation in human cells is lacking. We have used targeted recombination to create a series of isogenic HeLa cell lines in which (CTG)•(CAG) repeats are replicated from an ectopic copy of the c-myc replication origin. In this system the tendency of chromosomal (CTG)•(CAG) tracts to expand or contract was affected by origin location and the leading or lagging strand replication orientation of the repeats, and instability was enhanced by prolonged cell culture, increasing TNR length, and replication inhibition. Hairpin cleavage by synthetic zinc finger nucleases in these cells has provided the first direct evidence for the formation of hairpin structures during replication in vivo.

Pms2 is a genetic enhancer of trinucleotide CAG.CTG repeat somatic mosaicism: implications for the mechanism of triplet repeat expansion

The expansion of CAG . CTG repeat sequences is the cause of several inherited human disorders. Longer alleles are associated with an earlier age of onset and more severe symptoms, and are highly unstable in the germline and soma with a marked tendency towards repeat length gains. Germinal expansions underlie anticipation; whereas age-dependent, tissue-specific, expansion-biased somatic instability probably contributes toward the progressive nature and tissue-specificity of the symptoms. The mechanism(s) of repeat instability is not known, but recent data have implicated mismatch-repair (MMR) gene mutS homologues in driving expansion. To gain further insight into the expansion mechanism, we have determined the levels of somatic mosaicism of a transgenic expanded CAG . CTG repeat in mice deficient for the Pms2 MMR gene. Pms2 is a MutL homologue that plays a critical role in the downstream processing of DNA mismatches. The rate of somatic expansion was reduced by 50% in Pms2-null mice. A higher frequency of rare, but very large, deletions was also detected in these animals. No significant differences were observed between Pms2 1/1 and Pms2 1/2 mice, indicating that a single functional Pms2 allele is sufficient to generate normal levels of somatic mosaicism. These findings reveal that as well as MMR enzymes that directly bind mismatched DNA, proteins that are subsequently recruited to the complex also play a central role in the accumulation of repeat length changes. These data suggest that somatic expansion results not by replication slippage, single stranded annealing or simple MutS-mediated stabilization of secondary structures, but by inappropriate DNA MMR.

Pms2 is a genetic enhancer of trinucleotide CAG{middle dot}CTG repeat somatic mosaicism: implications for the mechanism of triplet repeat expansion

Human Molecular Genetics, 2004

The expansion of CAG. CTG repeat sequences is the cause of several inherited human disorders. Longer alleles are associated with an earlier age of onset and more severe symptoms, and are highly unstable in the germline and soma with a marked tendency towards repeat length gains. Germinal expansions underlie anticipation; whereas age-dependent, tissue-specific, expansion-biased somatic instability probably contributes toward the progressive nature and tissue-specificity of the symptoms. The mechanism(s) of repeat instability is not known, but recent data have implicated mismatch-repair (MMR) gene mutS homologues in driving expansion. To gain further insight into the expansion mechanism, we have determined the levels of somatic mosaicism of a transgenic expanded CAG. CTG repeat in mice deficient for the Pms2 MMR gene. Pms2 is a MutL homologue that plays a critical role in the downstream processing of DNA mismatches. The rate of somatic expansion was reduced by 50% in Pms2-null mice. A higher frequency of rare, but very large, deletions was also detected in these animals. No significant differences were observed between Pms2 1/1 and Pms2 1/2 mice, indicating that a single functional Pms2 allele is sufficient to generate normal levels of somatic mosaicism. These findings reveal that as well as MMR enzymes that directly bind mismatched DNA, proteins that are subsequently recruited to the complex also play a central role in the accumulation of repeat length changes. These data suggest that somatic expansion results not by replication slippage, single stranded annealing or simple MutS-mediated stabilization of secondary structures, but by inappropriate DNA MMR.