Canonical-type connection on almost contact manifolds with B-metric (original) (raw)

Abstract

The canonical-type connection on the almost contact manifolds with B-metric is constructed. It is proved that its torsion is invariant with respect to a subgroup of the general conformal transformations of the almost contact B-metric structure. The basic classes of the considered manifolds are characterized in terms of the torsion of the canonical-type connection.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (26)

  1. Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics 203, Birkhäuser, Boston (2002)
  2. Friedrich, T., Ivanov, S.: Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math. 6, 303-336 (2002)
  3. Friedrich, T., Ivanov, S.: Almost contact manifolds, connections with torsion, and parallel spinors. J. Reine Angew. Math. 559, 217-236 (2003)
  4. Ganchev, G., Gribachev, K., Mihova, V.: B-connections and their conformal invariants on conformally Kaehler manifolds with B-metric. Publ. Inst. Math. (Beograd) (N.S.) 42(56), 107-121 (1987)
  5. Ganchev, G., Ivanov, S.: Characteristic curvatures on complex Riemannian manifolds. Riv. Mat. Univ. Parma (5) 1, 155-162 (1992)
  6. Ganchev, G., Mihova, V.: Canonical connection and the canonical conformal group on an almost complex manifold with B-metric. Ann. Univ. Sofia Fac. Math. Inform. 81, 195-206 (1987)
  7. Ganchev, G., Mihova, V., Gribachev, K.: Almost contact manifolds with B-metric. Math. Balkanica (N.S.) 7 (3-4), 261-276 (1993)
  8. Gates, S. J., Hull, C. M., Roček, M.: Twisted multiplets and new supersymmetric non-linear σ -models. Nucl. Phys. B 248, 157-186 (1984)
  9. Gauduchon, P.: Hermitian connections and Dirac operators. Boll. Unione Mat. Ital. 11, 257-288 (1997)
  10. Gribacheva, D.: Natural connections on Riemannian product manifolds. Compt. rend. Acad. bulg. Sci. 64 (6), 799-806 (2011)
  11. Gribacheva, D.: Natural connections on conformal Riemannian P-manifolds. Compt. rend. Acad. bulg. Sci. 65 (5), 581-590 (2012)
  12. Gribacheva, D., Mekerov, D.: Canonical connection on a class of Riemannian almost product manifolds. J. Geom. 102 (1-2), 53-71 (2011)
  13. Hayden, H.: Subspaces of a space with torsion. Proc. London Math. Soc. 34, 27-50 (1934)
  14. Ivanov, S., Papadopoulos, G.: Vanishing theorems and string backgrounds. Classical Quant. Grav. 18, 1089-1110 (2001)
  15. Lichnerowicz, A.: Un théorème sur les espaces homogènes complexes. Arch. Math. 5, 207-215 (1954)
  16. Lichnerowicz, A.: Généralisation de la géométrie kählérienne globale. Coll. de Géom. Diff. Louvain, 99-122 (1955)
  17. Manev, M.: Properties of curvature tensors on almost contact manifolds with B-metric. Proc. of Jubilee Sci. Session of Vassil Levsky Higher Mil. School, Veliko Tarnovo, 27, 221-227 (1993)
  18. Manev, M.: Contactly conformal transformations of general type of almost contact manifolds with B- metric. Applications. Math. Balkanica (N.S.) 11 (3-4), 347-357 (1997)
  19. Manev, M.: A connection with totally skew-symmetric torsion on almost contact manifolds with B- metric. Int. J. Geom. Methods Mod. Phys. 9 (5), 1250044 (20 pages) (2012)
  20. Manev, M., Gribachev, K.: Contactly conformal transformations of almost contact manifolds with B- metric. Serdica Math. J. 19, 287-299 (1993)
  21. Manev, M., Gribachev, K.: Conformally invariant tensors on almost contact manifolds with B-metric. Serdica Math. J. 20, 133-147 (1994)
  22. Manev, M., Ivanova, M.: A classification of the torsion tensors on almost contact manifolds with B- metric. arXiv:1105.5715
  23. Manev, M., Ivanova, M.: A natural connection on some classes of almost contact manifolds with B- metric. Compt. rend. Acad. bulg. Sci. 65 (4), 429-436 (2012)
  24. Mekerov, D.: Canonical connection on quasi-Kähler manifolds with Norden metric. J. Tech. Univ. Plov- div Fundam. Sci. Appl. Ser. A Pure Appl. Math. 14, 73-86 (2009)
  25. Sasaki, S., Hatakeyama, Y.: On differentiable manifolds with certain structures which are closely related to almost contact structures II, Tôhoku Math. J. 13, 281-294 (1961)
  26. Strominger, A.: Superstrings with torsion. Nucl. Phys. B 274, 253-284 (1986)