8. Ghazy shaza Impact of different surface treatments on surface roughness and shear bond strength of metal ceramic crowns to ceramic brackets EDJ 2631-2640-16 (original) (raw)
Related papers
Shear bond strength of ceramic brackets after different pre-treatments in porcelain surface
DOAJ: Directory of Open Access Journals - DOAJ, 2015
Aim: To evaluate the bond strength of brackets bonded after different surface treatments on two dental ceramics. Methods: One hundred and twenty discs (5 mm thick and 7 mm diameter) of two ceramic types were made and randomly divided in 8 groups. Groups 1, 3, 5, and 7 used Eris ceramic and groups 2, 4, 6, and 8 used d.Sign ceramic. The ceramic surfaces were treated with 10% hydrofluoric acid (G1 and G2), 10% hydrofluoric acid + silane (G3 and G4), aluminum oxide blasting + 35% phosphoric acid + silane (G5 and G6), CoJet blasting + 35% phosphoric acid + silane (G7 and G8). Metallic brackets were cemented with Concise cement. Mechanical test was performed in a universal testing machine until failure. Results: The average values (MPa) obtained (G1-7.30; G2-6.12; G3-17.49; G4-19.54; G5-18.80; G6-21.93; G7-6.81 e G8-9.77) were submitted to ANOVA and Tukey test (p<0.05). The fracture patterns were analyzed in stereoscopic microscope (25´X) and representative samples of each group were analyzed in SEM. Conclusions: It was possible to conclude that use of silane after hydrofluoric acid increased the bond strength values.
With the increase in adult orthodontic treatment comes the need to find a reliable method for bonding orthodontic brackets onto metal or ceramic crowns and fixed partial dentures. In this study, shear bond strength and surface roughness tests were used to examine the effect of 4 different surface conditioning methods: fine diamond bur, sandblasting, 5% hydrofluoric acid, and silica coating for bonding metal brackets to ceramic surfaces of feldspathic porcelain. Sandblasting and hydrofluoric acid were further tested after silane application. A total of 120 ceramic disc samples were produced, and 50 were used for surface roughness measurements. The glazed ceramic surfaces were used as controls. Metal brackets were bonded to the ceramic substrates with a self-curing composite. The samples were stored in 0.9% NaCl solution for 24 hours and then thermocycled (5000 times, 5°C to 55°C, 30 seconds). Shear bond tests were performed with a universal testing device, and the results were statistically analyzed. Chemical surface conditioning with either hydrofluoric acid (4.3 m) or silicatization (4.4 m) resulted in significantly lower surface roughness than mechanical conditioning (9.3 m, diamond bur; 9.7 m, sandblasting) (P Ͻ .001). The surface roughness values reflect the mean peak-and-valley distances. The bond strengths of the brackets bonded to the ceramic surfaces treated by hydrofluoric acid with and without silane (12.2 and 14.7 MPa, respectively), silicatization (14.9 MPa), and sandblasting with silane (15.8 MPa) were significantly higher (P Ͻ .001) than those treated by mechanical roughening with fine diamond burs (1.6 MPa) or sandblasting (2.8 MPa). The highest bond strength values were obtained with sandblasting and silicatization with silane or hydrofluoric acid without silane; these fulfilled the required threshold. The use of silane after hydrofluoric acid etching did not increase the bond strength. Diamond roughening and sandblasting showed the highest surface roughness; they can damage the ceramic surface. Acid etching gave acceptable results for clinical use, but the health risks should be considered. The silicatization technique has the potential to replace the other methods; yet cohesive failures were observed in the ceramic during removal of the brackets. (Am J Orthod
Evaluation of shear bond strength of different treatments of ceramic bracket surfaces
Dental Press Journal of Orthodontics, 2012
OBJECTIVE: To evaluate the bonding strength of the ceramic bracket and composite resin restoration interface, using four types of treatment on the base of the bracket. METHODOLOGY: 48 photoactivated composite resin discs were used (FiltekTM Z250) contained in specimens and divided into 4 groups of 12 specimens for each group according to the type of treatment performed on the base of the brackets. Once the brackets were bonded, the specimens were subjected to shear stress carried out in a universal testing machine (MTS: 810 Material Test System) calibrated with a fixed speed of 0.5 mm / minute. The values obtained were recorded and compared by means of appropriate statistical tests - analysis of variance and then Tukey's test. RESULTS AND CONCLUSIONS: The surfaces of ceramic brackets conditioned with 10% hydrofluoric acid for 1 minute, followed by aluminum oxide blasting, 50µ, after silane application and primer application, was considered the best method to prepare surfaces of ...
Effect of different surface treatments on shear bond strength of ceramic brackets to old composite
2020
Background At present, the demand for orthodontic treatment is on the rise. On the other hand, evidence shows that the bond strength of composite resins to old composite restorations is often unreliable. Therefore, the aim of this in vitro study was to assess the effect of different surface treatments on shear bond strength (SBS) of ceramic brackets to old composite restorations. Methods In this in vitro experimental study, 60 nano-hybrid composite discs were fabricated. For aging, the discs were incubated in deionized water at 37 °C for 1 month. Next, they underwent 4 different surface treatments namely acid etching with 37% phosphoric acid, sandblasting, grinding, and Er,Cr:YSGG laser irradiation. Ceramic brackets were then bonded to the discs and underwent SBS testing. Results The maximum mean SBS value was obtained in the grinding group (9.16 ± 2.49 MPa), followed by the sandblasting (8.13 ± 2.58 MPa) and laser (6.57 ± 1.45 MPa) groups. The minimum mean SBS value was noted in th...
Effect of Ceramic Surface Treatment and Adhesive Systems on Bond Strength of Metallic Brackets
International Journal of Dentistry, 2020
Objective. This study evaluated the effect of ceramic surface treatments on bond strength of metal brackets to machinable ceramics and veneering porcelain using different adhesive resins. Materials and methods. Machined ceramic specimens (10 × 10 × 2 mm) were prepared from Vitablocs mark II (Vita) and IPS e.max® CAD (Ivoclar). Layered porcelain fused to metal (IPS d.Sign®, Ivoclar) was used to fabricate PFM specimens (n = 60/group). Half of specimens were etched (9.6% HF, 15 sec), and the rest were nonetched. Three resin bonding systems were used for attaching metal brackets (Victory series™ APC II, 3M) to each group (n = 10): Transbond™ XT (3M), Light Bond™ (Reliance), or Blugloo™ (Ormco), all cured with LED curing unit (Bluephase G1600, Vivadent) for 50 s each. Specimens were immersed in deionized water at 37°C for 24 hours prior to shear bond testing (Instron) at crosshead speed of 0.5 mm/min. Debond surface of ceramic and bracket base was examined for failure mode (FM), Ceramic ...
Shear bond strength of metal brackets to ceramic surfaces using a universal bonding resin
2018
Background Assure Plus is a recently introduced universal adhesive with the ability to bond to various restorations. This study compared the shear bond strength of brackets bonded to two types of ceramics using conventional bonding agent and Assure Plus. Surface damage caused by debonding was also evaluated. Material and Methods In this in vitro study, 40 feldspathic and lithium disilicate ceramic discs were sandblasted, etched with 9.6% hydrofluoric acid and divided into two groups. In group 1, silane was applied and air-dried followed by application of Transbond XT primer, which was light-cured. In group 2, Assure Plus was applied and air-dried. In both groups, maxillary central incisor brackets were bonded. After incubation in distilled water at 37°C for 24 hours and 2000 thermal cycles, bond strength was measured using a universal testing machine, and the adhesive remnant index (ARI) and failure modes were determined. ANOVA and LSD tests were used to compare bond strength values...
The Influence of Surface Conditioning of Ceramic Restorations before Metal Bracket Bonding
Materials Sciences and Applications, 2012
The aim of this study was to compare the shear bond strength and Adhesive Remnant Index of four different veneering ceramic materials to metal brackets. Additionally, it should be examined whether it is possible to overcome the etching method using hydrofluoric acid which is noxious. Instead of this treatment, air particle abrasion with 25 µm aluminium trioxide, silane coupling application and etching with 37.0 per cent orthophosphoric acid as pre-treatment procedures of the veneering ceramics before bonding was investigated. Two surface conditioning methods of four ceramic materials before bonding brackets were examined: in Group 1 an air particle abrasion with 25 µm aluminium trioxide (4 seconds at a pressure of 2.5 bars) and subsequently a silane coupling agent (Espe Sil, 3M Unitek, Monrovia, USA) was applicated on one side of each ceramic specimen (10 per group). In Group 2 one side of each sample (10 per group) was etched with 37.0 per cent orthophosphoric acid for two minutes and was followed by a silane application (Espe Sil, 3M Unitek, Monrovia, USA). After this procedure the self-ligating metal brackets SmartClip (3M Unitek, Monrovia, USA) brackets were bonded to the ceramic blocks and a thermocycling process started (5˚C-55˚C, 6000 cycles). Then, shear bond strength and Adhesive Remnant Index (ARI) were measured. To determine statistical differences Oneway-ANOVA and Tukey Post-hoc test were performed. The level of significance was set at α = 0.05. On the basis of the results of the current study, it could be concluded that sandblasting with 25 µm aluminium trioxide and the use of orthophosphoric acid (37.0 per cent) seem to prepare the surface of the ceramic restoration sufficiently before bracket bonding. The found level of shear bond strength values seem be sufficient for bracket bonding. Hydrofluoric acid seems not to be justifiable anymore for preparing the surface of dental ceramic restorations before bracket bonding.