Modification of Fibroins: Approaches to Get Optimise Scaffolds for Musculoskeletal Tissue Engineering. (original) (raw)
Related papers
Silk fibroin as biomaterial for bone tissue engineering
Acta Biomaterialia, 2015
DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
Silk Fibroin as a Functional Biomaterial for Tissue Engineering
International Journal of Molecular Sciences, 2021
Tissue engineering (TE) is the approach to combine cells with scaffold materials and appropriate growth factors to regenerate or replace damaged or degenerated tissue or organs. The scaffold material as a template for tissue formation plays the most important role in TE. Among scaffold materials, silk fibroin (SF), a natural protein with outstanding mechanical properties, biodegradability, biocompatibility, and bioresorbability has attracted significant attention for TE applications. SF is commonly dissolved into an aqueous solution and can be easily reconstructed into different material formats, including films, mats, hydrogels, and sponges via various fabrication techniques. These include spin coating, electrospinning, freeze drying, physical, and chemical crosslinking techniques. Furthermore, to facilitate fabrication of more complex SF-based scaffolds with high precision techniques including micro-patterning and bio-printing have recently been explored. This review introduces th...
Preparation of electrospun silk fibroin fiber mats as bone scaffolds: a preliminary study
Biomedical Materials, 2007
In the present contribution, electrospinning (e-spinning) was used to fabricate ultra-fine fibers of silk fibroin (SF) from cocoons of indigenous Thai silkworms (Nang-Lai) and Chinese/Japanese hybrid silkworms (DOAE-7). The effects of solution concentration (i.e., 10-40% (w/v) in 85% (v/v) formic acid) and applied electrostatic field strength (EFS; 10, 15 and 20 kV/10 cm) on morphology and size of the electrospun (e-spun) SF products were investigated by scanning electron microscopy. The average diameter of the resulting e-spun SF fibers was found to increase with an increase in both the solution concentration and the EFS value. Specifically, the average diameter of the e-spun SF fibers from Nang-Lai SF solutions ranged between 217 and 610 nm, while that of the fibers from DOAE-7 SF solutions ranged between 183 and 810 nm. The potential for use of the e-spun SF fiber mats as bone scaffolds was assessed with mouse osteoblast-like cells (MC3T3-E1) in which the cells appeared to adhere and proliferate well on their surface.
Biology
In this study, a novel nanofibrous hybrid scaffold based on silk fibroin (SF) and different weight ratios of kappa-carrageenan (k-CG) (1, 3, and 5 mg of k-CG in 1 mL of 12 wt% SF solution) was prepared using electrospinning and genipin (GP) as a crosslinker. The presence of k-CG in SF nanofibers was analyzed and confirmed using Fourier transform infrared spectroscopy (FTIR). In addition, X-ray diffraction (XRD) analysis confirmed that GP could cause SF conformation to shift from random coils or α-helices to β-sheets and thereby facilitate a more crystalline and stable structure. The ultimate tensile strength (UTS) and Young’s modulus of the SF mats were enhanced after crosslinking with GP from 3.91 ± 0.2 MPa to 8.50 ± 0.3 MPa and from 9.17 ± 0.3 MPa to 31.2 ± 1.2 MP, respectively. Notably, while the mean fiber diameter, wettability, and biodegradation rate of the SF nanofibers increased with increasing k-CG content, a decreasing effect was determined in terms of UTS and Young’s modu...
Silk fibroin nanocomposites as tissue engineering scaffolds – A systematic review
Biomedicine & Pharmacotherapy, 2021
Silk fibroin is a protein with intrinsic characteristics that make it a good candidate as a scaffold for tissue engineering. Recent works have enhanced its benefits by adding inorganic phases that interact with silk fibroin in different ways. A systematic review was performed in four databases to study the physicochemical and biological performance of silk fibroin nanocomposites. In the last decade, only 51 articles contained either in vitro cell culture models or in vivo tests. The analysis of such works resulted in their classification into the following scaffold types: particles, mats and textiles, films, hydrogels, sponge-like structures, and mixed conformations. From the physicochemical perspective, the inorganic phase imbued in silk fibroin nanocomposites resulted in better stability and mechanical performance. This review revealed that the inorganic phase may be associated with specific biological responses, such as neovascularisation, cell differentiation, cell proliferation, and antimicrobial and immunomodulatory activity. The study of nanocomposites as tissue engineering scaffolds is a highly active area mostly focused on bone and cartilage regeneration with promising results. Nonetheless, there are still many challenges related to their application in other tissues, a better understanding of the interaction between the inorganic and organic phases, and the associated biological response.
Scientific Reports
Silk fibroin (SF), a natural polymer produced by Bombyx mori silkworms, has been extensively explored to prepare porous scaffolds for tissue engineering applications. Here, we demonstrate, a scaffold made of SF, which exhibits compression modulus comparable to natural cancellous bone while retaining the appropriate porosities and interconnected pore architecture. The scaffolds also exhibit high resistance to in-vitro proteolytic degradation due to the dominant beta sheet conformation of the SF protein. Additionally, the scaffolds are prepared using a simple method of microparticle aggregation. We also demonstrate, for the first time, a method to prepare SF micro-particles using a Hexafluoroisopropanol-Methanol solvent-coagulant combination. SF microparticles obtained using this method are monodisperse, spherical, non-porous and extremely crystalline. These micro-particles have been further aggregated together to form a 3D scaffold. The aggregation is achieved by random packing of these microparticles and fusing them together using a dilute SF solution. Preliminary in-vitro cell culture and in-vivo implantation studies demonstrate that the scaffolds are biocompatible and they exhibit the appropriate early markers, making them promising candidates for bone regeneration. Bone regeneration remains to be an active and flourishing area for research today 1-4. Appropriate substrates or scaffolds form an integral part of tissue engineering and regenerative therapies. For a substrate to effectively perform as a scaffold, the following characteristics are vital. Most importantly, the scaffold must be biocompatible, which means that the scaffold must support the cellular activity and the scaffolding material and its biodegradation products, if any, must elicit only minimal inflammatory response 5,6. The scaffold must be porous and must support production of natural extracellular matrix and allow efficient transport of gases and nutrients and migration of cells. If the material is biodegradable, the biodegradation rate of scaffold must be in accordance with that of the new tissue regeneration 1. For bone regeneration, the scaffold must have excellent stiffness to provide structural strength. Polymeric scaffolds providing the appropriate physical, chemical and mechanical cues for tissue regeneration have thus, been extensively studied 6. The choice of the scaffolding material provides the chemical cues for the cellular activity. Biodegradable natural polymers are especially a promising alternative as the need for surgical removal is obviated and they are chemically similar, usually proteinaceous, to the natural extra-cellular matrix. One such naturally derived polymer, Silk Fibroin (SF) has been extensively explored for regenerative applications in the last few decades 7-10. SF is a natural protein polymer extracted from the cocoon of silkworm Bombyx mori. It has excellent and proven biocompatibility, outstanding thermo-mechanical stability, tunable biodegradation and ease of processability 11,12. Several studies have successfully demonstrated use of SF for vascular, neural, bone, ligament, cartilage, skin, intervertebral disc, heart, ocular and spinal cord tissue regeneration 7,8,11,13. A variety of different cell lines including mesenchymal stem cells, fibroblasts, osteoblasts, myoblasts, chondrocytes, keratinocytes and neurons have been cultured on these SF matrices. These studies suggest that the SF matrix provides the appropriate chemical cues required for regeneration.
Journal of Biomedical Materials Research Part A, 2013
The demand for substitution of fossil-based materials by renewable bio-based materials is increasing with the fossil resources reduction and its negative impacts on the environment. In this study, environmentally friendly regenerated cellulose films were successfully prepared using 1-allyl-3-methylimidazolium chloride (AmimCl), 1-butyl-3-methylimidazolium chloride (BmimCl), 1ethyl-3-methylimidazolium chloride (EmimCl), and 1-ethyl-3-methylimidazolium acetate (EmimAc) as solvents, respectively. The results of morphology from scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that all the cellulose films possessed smooth, highly uniform, and dense surface. The solid-state cross-polarization/magic angle spinning (CP/MAS) 13 C NMR spectra and X-ray diffraction (XRD) corroborated that the transition from cellulose I to II had occurred after preparation. Moreover, it was shown that the ionic liquid EmimAc possessed much stronger dissolubility for cellulose as compared with other ionic liquids and the cellulose film regenerated from EmimCl exhibited the most excellent tensile strength (119 Mpa). The notable properties of regenerated cellulose films are promising for applications in transparent biodegradable packaging and agricultural purpose as a substitute for PP and PE.
Bioactivity and Biocompatibility Studies on Silk-Based Scaffold for Bone Tissue Engineering
Journal of Medical and Biological Engineering, 2013
Novel materials with promising properties can be used to achieve scaffold-based tissue engineering goals. Natural silk (NS) polymer has remarkable biomedical and mechanical properties as a material for bone tissue engineering scaffolds. This study describes the fabrication of a silk-based composite, in which natural silk and regenerated silk (RS) are combined to achieve better mechanical properties in the three-dimensional (3D) porous form. The biocompatibility and bioactivity of these scaffolds are evaluated. RS was made using mulberry-silk cocoons. RS/NS composite scaffolds were fabricated using the freeze-drying technique. Silk protein extract was evaluated by Fourier transform infrared spectroscopy (FTIR), with sharp amide peaks appearing at 1655 cm-1 and 1530 cm-1 in the FTIR spectrum, confirming the existence of fibroin. The fabricated 3D scaffolds were morphologically analyzed by scanning electron microscopy (SEM). An inter-connective spongy structure was found. Mechanical characterizations were carried out using a universal testing machine. Results show that the mechanical properties of the RS/NS composites are better than those of scaffolds fabricated with RS alone. In addition, in vitro tests, including those for cell viability and adhesion, were carried out with osteoblast cells by the MTT assay with a new calculation approach, which confirmed biocompatibility. The bioactivity potential of the RS and composites fibers was tested by introducing scaffolds to normal simulated body fluid for 21 days. Energy-dispersive X-ray spectroscopy and SEM analyses proved the existence of CaP crystals for both configurations. Thus, reinforced silk composite is a bioactive and biocompatible alternative for bone tissue engineering applications. http://jmbe.bme.ncku.edu.tw/index.php/bme/article/viewArticle/1648
Silk as a Biopolymer for Tissue Engineering Applications
2019
Regeneration of diseased or damaged tissues is one of the challenges in tissue engineering. Although there have been many methods developed, scaffold-based tissue engineering provides both biological and functional environment for regeneration. In last decade, Silk fibroin has gained immense importance for applications in tissue engineering scaffolding. It is a fibrous protein extracted from cocoons of Bombyx mori and spiders. It has been used as a biomaterial for tissue engineering owing to its unique mechanical properties, controllable biodegradation rate and biocompatibility. This review discusses about properties of silk fibroin and recent application with advancement of silk fibroin as a biomaterial in various tissue engineering approaches.
The potential of silk fibroin as a polymer composite reinforcement for bone implant materials
MATEC Web of Conferences
Silk fibroin is an outstanding material because of their biocompatible and excellent mechanical properties. This review article is focused on silk fibroin and silk fibroin-based composites that are used as biomaterials and their potential for composite reinforcing materials for artificial bone engineering. This material is chosen because it is biocompatible, low biodegradable, as well as ease of fabrication, as well as a variety of good mechanical behavior. The first part provides the introduction of some polymer-based materials used as biomaterials. The second part is more focused on silk fibroin applications as biomaterials that include silk fibroin structure, biocompatibility, degradation, immunological responses, sterilizability, drug delivery for osteogenesis, and fibroin reinforcement materials silk.