Isolation and Identification of Natural Colorant Producing Soil-Borne Aspergillus niger from Bangladesh and Extraction of the Pigment (original) (raw)

Abstract

Natural colorants have been used in several ways throughout human history, such as in food, dyes, pharmaceuticals, cosmetics, and many other products. The study aimed to isolate the natural colorant-producing filamentous fungi Aspergillus niger from soil and extract pigments for its potential use specially for food production. Fourteen soil samples were collected from Madhupur National Park at Madhupur Upazila in the Mymensingh district, Bangladesh. The Aspergillus niger was isolated and identified from the soil samples by following conventional mycological methods (cultural and morphological characteristics), followed by confirmatory identification by a polymerase chain reaction (PCR) of conserved sequences of ITS1 ribosomal DNA using specific oligonucleotide primers. This was followed by genus- and species-specific primers targeting Aspergillus niger with an amplicon size of 521 and 310 bp, respectively. For pigment production, a mass culture of Aspergillus niger was conducted in Sabouraud dextrose broth in shaking conditions for seven days. The biomass was subjected to extraction of the pigments following an ethanol-based extraction method and concentrated using a rotary evaporator. Aspergillus niger could be isolated from three samples. The yield of extracted brown pigment from Aspergillus niger was 0.75% (w/v). Spectroscopic analysis of the pigments was carried out using a UV–VIS spectrophotometer. An in vivo experiment was conducted with mice to assess the toxicity of the pigments. From the colorimetric and sensory evaluations, pigment-supplemented products (cookies and lemon juice) were found to be more acceptable than the control products. This could be the first attempt to use Aspergillus niger extracted pigment from soil samples in food products in Bangladesh, but for successful food production, the food colorants must be approved by a responsible authority, e.g., the FDA or the BSTI. Moreover, fungal pigments could be used in the emerging fields of the food and textile industries in Bangladesh.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (46)

  1. Barrows, J.N.; Lipman, A.L.; Baily, C.J. Color Additives: FDA Regulatory Process and Historical Perspectives. Available online: https://www.food-safety.com/articles/4207-color-additives-fdas-regulatory-process-and-historical-perspectives (accessed on 1 May 2021).
  2. Downham, A.; Collins, P. Coloring our foods in the last and next millennium. Int. J. Food Sci. Technol. 2000, 35, 5-22. [CrossRef]
  3. Ramesh, C.; Vinithkumar, N.V.; Kirubagaran, R.; Venil, C.K.; Dufossé, L. Multifaceted applications of microbial pigments: Current knowledge, challenges and future directions for public health implications. Microorganisms 2019, 7, 186. [CrossRef]
  4. Venil, C.K.; Velmurugan, P.; Dufossé, L.; Devi, P.R.; Ravi, A.V. Fungal Pigments: Potential coloring compounds for wide ranging applications in textile dyeing. J. Fungi 2020, 6, 68. [CrossRef]
  5. Shatila, F.; Yusef, H.; Holail, H. Pigment production by Exiguobacterium aurantiacum FH, a novel Lebanese strain. Int. J. Curr. Microbiol. App. Sci. 2013, 2, 176-191.
  6. Kulkarni, P.; Gupta, N. Screening and evaluation of soil fungal isolates for xylanase production. Recent Res. Sci. Technol. 2013, 5, 33-36.
  7. Akilandeswari, P.; Pradeep, B.V. Exploration of industrially important pigments from soil fungi. Appl. Microbiol. Biotechnol. 2016, 100, 1631-1643. [CrossRef] [PubMed]
  8. Muniz, C.C.; Zelaya, T.E.C.; Esquivel, G.R.; Fernandez, F.J. Penicillin and cephalosporin production: A historical perspective. J. Microbiol. 2007, 49, 88-98.
  9. Sharmila, K.; Thillaimaharani, K.A.; Logesh, A.R.; Sathishkumar, A.; Kalaiselvam, M. Production of cyclosporin-A by saprophytic filamentous fungus Fusarium oxysporum. Int. J. Pharm. Sci. 2012, 4, 149-153.
  10. Singh, S.K.; Pandey, A. Emerging approaches in fermentative production of statins. Appl. Biochem. Biotechnol. 2013, 171, 927-938. [CrossRef] [PubMed]
  11. Asnaashari, M.; Ghanbary, M.A.T.; Tazick, Z. Optimization of penicillin G production by Penicillium chrysogenum. Ann. Biol. Res. 2012, 3, 5434-5440.
  12. Endo, A.; Kuroda, M.; Tsujita, Y. ML-236A, ML-236B, ML-236C, new inhibitors of cholestrogenisis produced by Penicillium citrinium. J. Antibiot. 1997, 29, 1346-1348. [CrossRef]
  13. Dhale, M.A.; Divakar, S.; UmeshKumar, S.; Vijayalakshmi, G. Characterization of dehydromonacolin-MV2 from Monascus purpureus mutant. J. Appl. Microbiol. 2007, 103, 2168-2173. [CrossRef]
  14. Cho, Y.J.; Park, J.P.; Hwang, H.J.; Kim, S.W.; Choi, J.W.; Yun, J.W. Production of red pigment by submerged culture of Paecilomyces sinclairii. Lett. Appl. Microbiol. 2002, 35, 195-202. [CrossRef]
  15. Saeed, K.; Zafar, I.; Ghosia, L.; Bacha, N.; Khan, A.A.; Saeed, M.; Ali, M. Phytotoxic and herbicidal activities of Aspergillus and Penicillium species isolated from rhizosphere and soil. Pakistan J. Weed Sci. Res. 2014, 20, 293-303.
  16. Rai, H.; Battacharyya, M.S.; Singh, J.; Bansal, T.K.; Vats, P.; Banerjee, U.C. Removal of dyes from the effluent of textile and dyestuff manufacturing industry-A review of emerging techniques with reference to biological treatment. Crit. Rev. Environ. Sci. Technol. 2005, 35, 219-238. [CrossRef]
  17. Dufosse, L.; Fouillaud, M.; Caro, Y.; Mapari, S.A.S.; Sutthiwong, N. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr. Opin. Biotechnol. 2014, 26, 56-61. [CrossRef]
  18. Duffose, L. Pigments, Microbial. Encycl. Microbiol. 2009, 4, 457-471.
  19. Kalra, R.; Conlan, X.A.; Goel, M. Fungi as a potential source of pigments: Harnessing filamentous fungi. Front. Chem. 2020, 8, 369. [CrossRef]
  20. Mia, M.Y.; Hossain, M.U.; Farzana, S. Prospects and Constraints of Madhupur National Park Management. J. Environ. Sci. Nat. Resour. 2012, 5, 151-158. [CrossRef]
  21. Gain, P. The Last forests of Bangladesh, 2nd ed.; Society for Environment and Human Development (SHED): Dhaka, Bangladesh, 2002; pp. 1-224.
  22. Hoque, A.E.; Islam, A.K.M.N.; Huq, S.M.I. Seasonal variation of edaphic features of Madhupur Sal forest, Bangladesh. Ecoprint 2008, 15, 7-14. [CrossRef]
  23. Fakruddin, M.; Chowdhury, A.; Hossain, M.N.; Ahmed, M.M. Characterization of aflatoxin producing Aspergillus flavus from food and feed samples. SpringerPlus 2013, 4, 159. [CrossRef]
  24. Sugita, C.; Makimura, K.; Uchida, K.; Yamaguchi, H.; Nagai, A. PCR identification system for the genus Aspergillus and three major pathogenic species: A. fumigatus, A. flavus and Aspergillus niger. Med. Mycol 2004, 42, 433-437. [CrossRef] [PubMed]
  25. Poorniammal, R.; Gunasekaran, S.; Sakthi, A.R. Production and application of natural food colorant from Thermomyces spp. Asian J. Dairy Food Res. 2015, 34, 130-135. [CrossRef]
  26. Jha, J.; Meenu, K.; Sinha, P. Microbial pigment as an alternative to synthetic dye. J. Young Sci. IRIS 2017, 7, 52-60.
  27. Hinch, E.M.; Robinson, S.C. Mechanical Color Reading of Wood-Staining Fungal Pigment Textile Dyes: An Alternative Method Determining Colorfastness. Coatings 2006, 6, 25. [CrossRef]
  28. Velmurugan, P.; Kamala, K.S.; Balachandar, V.; Lakshmanaperumalsamy, P.; Chae, J.C.; Oh, B.T. Natural pigment extraction from five filamentous fungi for industrial application and dyeing of leather. Carbohydr. Polym. 2010, 79, 262-268. [CrossRef]
  29. Goncalves, R.C.; Lisboa, H.C.; Pombeiro-Sponchiado, S.R. Characterization of melanin pigment produced by Aspergillus nidulans. World J. Microbiol. Biotechnol. 2012, 28, 1467-1474. [CrossRef]
  30. Liu, Y.; Zheng, W.; Ibrahim, S.A.; Yang, H.; Huang, W. Chemical properties of vacuum-fried Pleurotuseryngii during storage and characterization of brown pigment. Int. J. Food Prop. 2017, 20, 2349-2358. [CrossRef]
  31. Ali, M.Y.; Hassan, A.M.; Mohamed, Z.A.; Ramadan, M.F. Effect of food colorants and additives on the hematological and histological characteristics of albino rats. Toxicol. Environ. Health Sci. 2019, 11, 155-167. [CrossRef]
  32. Elekima, I.; Nwachuku, O.E. Evaluation of Acute and Chronic Toxicity of Tartrazine (E102) on Steriod Reproductive Hormones of Albino Rats. Asian J. Res. Rep. Endocrin. 2019, 1, 1-5. Available online: https://journalajrre.com/index.php/AJRRE/article/ view/30095 (accessed on 1 May 2021).
  33. Begum, S.; Das, P.C.; Karmoker, P. Processing of mixed fruit juice from mango, orange and pineapple. Fund. Appl. Agric. 2018, 3, 440-445. [CrossRef]
  34. Mapari, S.A.S.; Meyer, A.S.; Thrane, U. Colorimetric characterization for comparative analysis of fungal pigments and natural food colorants. J. Agric. Food Chem. 2006, 54, 7028-7035. [CrossRef]
  35. Lucky, A.R.; Al-Mamun, A.; Hosen, A.; Toma, M.A.; Mazumder, M.A.R. Nutritional and sensory quality assessment of plain cake enriched with beetroot powder. Food Res. 2020, 4, 2049-2053. [CrossRef]
  36. FAO. The Future of Food and Agriculture-Trends and Challenges; Annual Report; Food and Agriculture Organization: Rome, Italy, 2017.
  37. Dufosse, L. Microbial production of food grade pigments. J. Food Tech. Biol. 2006, 44, 313-321.
  38. Ravimannan, N.; Sevvel, P.; Saarutharshan, S. Study on fungi associated with spoilage of bread. Int. J. Adv. Res. Biol. Sci. 2016, 3, 165-167. Available online: http://s-o-i.org/1.15/ijarbs-2016-3-4-23 (accessed on 1 May 2021).
  39. Devi, A.A. Extraction of natural dyes from fungus-an alternative for textile dyeing. J. Nat. Sci. Res. 2014, 4, 1-6.
  40. Ray, A.C.; Eakin, R.E. Studies on the biosynthesis of Aspergillin by Aspergillus niger. Appl. Microbiol. 1975, 30, 909-915. [CrossRef] [PubMed]
  41. Ponraj, M.; Jamunarani, P.; Zambare, V. Isolation and Optimization of Culture Conditions for Decolorization of True Blue Using Dye Decolorizing Fungi. Asian J. Exp. Biol. Sci. 2011, 2, 270-277.
  42. Guyomarch, F.; Binet, A.; Dufosse, L. Production of carotenoids by Brevibacterium linens: Variation among strains, kinetic aspects and HPLC profiles. J. Ind. Microbiol. Biotechnol. 2000, 24, 64-70. [CrossRef]
  43. Atalla, M.M.; Elkhrisy, E.A.M.; Ase, M.A. Production of textile reddish brown dyes by fungi. Malays. J. Microbiol. 2011, 7, 33-40.
  44. Bechtold, T. Handbook of Natural Colorants; John Wiley & Sons: Chichester, UK, 2009; Chapter 10; pp. 151-182.
  45. Zalar, P.; de Hoog, G.S.; Schroers, H.J.; Crous, P.W.; Groenewald, J.Z.; Gunde-Cimerman, N. Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hyper saline environments. Stud. Mycol. 2007, 58, 157-183. [CrossRef] [PubMed]
  46. Sutthiwong, N.; Caro, Y.; Milhau, C.; Valla, A.; Fouillaud, M.; Dufosse, L. Arthrobacter arilaitensis strains isolated from ripened cheeses: Characterization of their pigmentation using spectrocolorimetry. Food Res. Int. 2014, 65, 184-192. [CrossRef]