Understanding COVID-19, Genome, Epidemiology, Diagnosis, Treatment, and Vaccination (original) (raw)
Related papers
Journal of Experimental Biology and Agricultural Sciences, 2020
The novel coronavirus (CoV), earlier named 2019-nCoV, and later as severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2) has now created havoc and panic across the globe by its severe ongoing pandemic. This virus has to date as of 23rd November 2020, killed nearly 1.4 million persons out of more than 59 million confirmed positive cases, while spreading rapidly in more than 215 countries and territories. Taxonomically, SARS-CoV-2 has been characterized in genus Betacoronavirus, which contains non-segmented positive-sense, single-stranded (ss) RNA genome of 30 kb. The first two open reading frames (ORFs), ORF1a and ORF1b, of SARS-CoV-2, encode 16 non-structural proteins (nsp1-nsp16), whereas other ORFs encodes four main structural proteins (sp) [spike (s) by ORF2, envelope (E) by ORF4, membrane (M) by ORF5, nucleoprotein (N) by ORF9], and accessory proteins essential for the virus fitness, pathogenesis and host immunity evasion. Sequence alignments of SARS-CoV-2 with genomes...
Journal of thee Medical Sciences (Berkala Ilmu Kedokteran), 2020
Recent outbreaks of human coronaviruses, officially named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have put health authorities worldwide on a high alert. Firstly emerged in the city of Wuhan, China, SARS-CoV-2 infection is rapidly escalating into a global pandemic. It is first thought as the result of a zoonotic transmission event, similar to the previous epidemic of coronaviruses. However, a continuously increasing number of confirmed cases indicates that the virus gains capacity of efficient human-to-human transmission. Soon after the pandemic is arising, many efforts are focused on identifying the origin of SARS-CoV-2 infection in the human population. Current evidence suggests that the virus is probably derived from bat or pangolin coronaviruses as the natural host. Whether intermediate host(s) exist in the transmission cascade from bat or pangolin to humans is, to a great extent, elusive. This information is essential as the basis for infection prevention and control measures. In this review, we discuss our recent understanding of SARS-CoV-2 biology, highlighting its origin and molecular evolution. ABSTRAK Saat ini, kita sedang menghadapi wabah yang disebabkan oleh human corona virus, yang secara resmi diberi nama severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Wabah ini medapatkan perhatian yang luas dari berbagai institusi kesehatan di seluruh dunia. Dilaporkan pertama kali terjadi di kota Wuhan, Cina, wabah SARS-CoV-2 secara cepat telah menyebar ke banyak negara dan berkembang menjadi pandemi. Diduga awalnya bahwa virus SARS-CoV-2 ini berasal dari transmisi hewan kemanusia, sama seperti wabah coronaviruses sebelumnya. Akan tetapi, jumlah kasus terkonfirmasi yang semakin meningkat, menunjukkan indikasi bahwa virus SARS-CoV-2 telah memiliki kapasitas untuk menular secara efektif dari manusia ke manusia. Segera setelah wabah terjadi, berbagai studi difokuskan untuk melacak asal urus virus SARS-CoV-2 sebelum menginfeksi manusia. Buktibukti terkini menunjukkan bahwa SARS-CoV-2 kemungkinan berasal dari coronaviruses yang bersirkulasi di bats (kelelawar) atau pangolins. Apakah terdapat intermediate host antara kelelawar atau pangolins dan manusia, masih belum jelas. Informasi semacam ini sangat penting sebagai dasar tindakan pencegahan dan pengendalian wabah. Pada artikel ini, kami membahas tentang biologi virus SARS-CoV-2, dengan fokus pada asal usul dan evolusi virus tersebut.
COVID-19 and SARS-CoV-2: Molecular Genetics Perspectives
Corona virus disease-19 (COVID-19) is a zoonotic viral disease caused by severe acute respiratory syndrome corona virus (SARS-CoV-2), which was first reported from Wuhan, Hubei province, in China in December 2019. The source of virus is believed to be from bats and the intermediate host is pangolins (ant eaters). The SARS-CoV-2 genome is fully sequenced and genome data are available now. Recent molecular studies on the three corona viruses-SARS-CoV, MERS-CoV(Middle East Respiratory Syndrome Corona virus), and SARS-CoV-2 can shed light on the mechanisms of COVID-19 infection, which could help the world to identify therapeutic target molecules, formulate control measures, and adopt appropriate preventive measures including development of vaccine(s).
3 Biotech
Coronavirus disease (COVID-19) pandemic is instigated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of March 13, 2021, more than 118.9 million cases were infected with COVID-19 worldwide. SARS-CoV-2 is a positive-sense single-stranded RNA beta-CoV. Most COVID-19 infected individuals recover within 1-3 weeks. Nevertheless, approximately 5% of patients develop acute respiratory distress syndrome and other systemic complications, leading to death. Structural genetic analyses of SARS-CoV-2 have shown genomic resemblances but a low evolutionary correlation to SARS-CoV-1 responsible for the 2002-2004 outbreak. The S glycoprotein is critical for cell adhesion and the entrance of the virus into the host. The process of cell entry uses the cellular receptor named angiotensin-converting enzyme 2. Recent evidence proposed that the CD147 as a SARS-CoV-2′s potential receptor. The viral genome is mainly held by two nonstructural proteins (NSPs), ORF1a and ORF1ab, along with structural proteins. Although NSPs are conserved among the βCoVs, mutations in NSP2 and NSP3 may play critical roles in transmitting the virus and cell tropism. To date, no specific/ targeted anti-viral treatments exist. Notably, more than 50 COVID-19 candidate vaccines in clinical trials, and a few being administered. Preventive precautions are the primary strategy to limit the viral load transmission and spread, emphasizing the urgent need for developing significant drug targets and vaccines against COVID-19. This review provides a cumulative overview of the genomic structure, transmission, phylogeny of SARS-CoV-2 from Indian clusters, treatment options, updated discoveries, and future standpoints for COVID-19.
Gene Reports, 2020
In this review, we focused on the origins of the novel coronavirus (SARS-CoV-2), origin, pathogenesis, immune responses, genes and genetic variations, phylogenetic analyses, and potential therapeutic strategies to summarize approaches for developing broadly effective preventions and vaccines to cope COVID-19. Towards the end of 2019, SARS-CoV-2 has emerged in association with the SARS, later was named COVID-19 caused an environment of chaos worldwide and infected a massive number of lives. Since these epidemics or pandemics had spread to 210 countries and territories around the world and 2 international conveyances with 6,467,229 confirmed cases, including, 382,766 deaths, as of June 03, 2020 (https://www.worldometers.info/coronavirus/), hence the World Health Organization declared it as a global Public Health Emergency. There are no clinically approved vaccines or antiviral drugs available for either of new or old corona infections; thus, the development of effective therapeutic and preventive strategies that can be readily available to cope with these strains.
Asian Journal of Biology
Coronaviruses (CoVs) are a large group of enveloped viruses with a positive-sense RNA that have characteristic spikes projecting from their surface. CoVs are well known for their large RNA genome (26-32 kb). They primarily affect mammals and birds, causing infections of the respiratory and gastrointestinal tracts. The emergence of human CoVs (HCoVs) has been reported once every ten years for the last three decades. The most recent emergence occurred in December 2019, when a new strain of CoVs named SARS-CoV-2 caused the coronavirus disease 2019 (COVID-19) pandemic, leaving a devastating impact on the global healthcare. The early cases were associated with the Huanan seafood market in Wuhan, although the exact origin of the virus is still being debated. Phylogenetic analysis reveals bats to be the reservoir hosts, but the intermediate host responsible for spill-over into the human population remains debatable. Accumulating evidence cites pangolins based on the similarity of receptor ...
Coronaviruses (CoVs) are RNA viruses that have become a major public health concern since the Severe Acute Respiratory Syndrome-CoV (SARS-CoV) outbreak in 2002. The continuous evolution of coronaviruses was further highlighted with the emergence of the Middle East Respiratory Syndrome-CoV (MERS-CoV) outbreak in 2012. Currently, the world is concerned about the 2019 novel CoV (SARS-CoV-2) that was initially identified in the city of Wuhan, China in December 2019. Patients presented with severe viral pneumonia and respiratory illness. The number of cases has been mounting since then. As of late February 2020, tens of thousands of cases and several thousand deaths have been reported in China alone, in addition to thousands of cases in other countries. Although the fatality rate of SARS-CoV-2 is currently lower than SARS-CoV, the virus seems to be highly contagious based on the number of infected cases to date. In this review, we discuss structure, genome organization, entry of CoVs into target cells, and provide insights into past and present outbreaks. The future of human CoV outbreaks will not only depend on how the viruses will evolve, but will also depend on how we develop efficient prevention and treatment strategies to deal with this continuous threat.
2020
A novel coronavirus (SARS-CoV-2), causing an emerging coronavirus disease (COVID-19), first detected in Wuhan City, Hubei Province, China has resulted in an outbreak in China which has taken a catastrophic turn with high toll rates in China and subsequently spreading across the globe. The rapid spread of this virus to more than 175 countries while affecting nearly 500,000 persons and causing more than 22,000 human deaths, it has resulted in a pandemic situation in the world. The SARS-CoV-2 virus belongs to the genus Betacoronavirus, like MERS-CoV and SARS-CoV, all of which originated in bats. It is highly contagious, causing symptoms like fever, dyspnea, asthenia and pneumonia, thrombocytopenia and the severely infected patients succumb to the disease. Coronaviruses (CoVs) among all known RNA viruses have the largest genomes ranging from 26 to 32 kb in length. Extensive research has been conducted to understand the molecular basis of the SARS-CoV-2 infection and evolution, develop e...
Annals of Clinical Microbiology and Antimicrobials
A novel coronavirus (SARS-CoV-2), causing an emerging coronavirus disease (COVID-19), first detected in Wuhan City, Hubei Province, China, which has taken a catastrophic turn with high toll rates in China and subsequently spreading across the globe. The rapid spread of this virus to more than 210 countries while affecting more than 25 million people and causing more than 843,000 human deaths, it has resulted in a pandemic situation in the world. The SARS-CoV-2 virus belongs to the genus Betacoronavirus, like MERS-CoV and SARS-CoV, all of which originated in bats. It is highly contagious, causing symptoms like fever, dyspnea, asthenia and pneumonia, thrombocytopenia, and the severely infected patients succumb to the disease. Coronaviruses (CoVs) among all known RNA viruses have the largest genomes ranging from 26 to 32 kb in length. Extensive research has been conducted to understand the molecular basis of the SARS-CoV-2 infection and evolution, develop effective therapeutics, antivi...
SARS-CoV-2 and COVID-19: A Threat to Global Health
2020
Since the outbreak of Coronavirus Disease 2019 (COVID-19) in China, in December 2019, scientists across the globe have been working relentlessly on the causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Unfortunately, despite the ongoing research at the genomic level, as well as the immunological and the pathological aspects of SARS-CoV-2, our knowledge about SARS-CoV-2 is still in the primary stage, even after one year from the beginning of the outbreak. As a result, the world is adopting a public awareness-based prevention and control strategy, together with significant efforts in developing and distributing several vaccines. Thus, this review summarizes the understandings of this pandemic, which will in turn be helpful in dealing with SARS-CoV-2 and provide a reference for future studies.