Using Rules in the Narrative Knowledge Representation Language (NKRL) Environment (original) (raw)

NKRL is a semantic language expressly designed to deal with all sort of 'narratives', in particular with those ('non-fictional narratives') of an economic interest. From a knowledge representation point of view, its main characteristics consists in the use of two different sorts of ontologies, a standard, binary ontology of concepts, and an ontology of n-ary templates, where each template corresponds to the formal representation of a class of elementary events. Rules in NKRL correspond to high-level reasoning paradigms like the search for causal relationships or the use of analogical reasoning. Given i) the conceptual complexity of these paradigms, and ii) the sophistication of the underlying representation language, rules in NKRL cannot be implemented in a (weak) 'inference by inheritance' style but must follow a powerful 'inference by resolution' approach. After a short reminder about these two inference styles, and a quick introduction of the NKRL language, the chapter describes in some depth the main characteristics of the NKRL inference rules.