Deterministic entanglement and tomography of ion–spin qubits (original) (raw)
Related papers
Coherent Population Trapping in Multi-Level Atomic Systems
Physica Scripta, 2001
The quantum physics of light is a most fascinating field. Here I present a very personal viewpoint, focusing on my own path to quantum entanglement and then on to applications. I have been fascinated by quantum physics ever since I heard about it for the first time in school. The theory struck me immediately for two reasons: (1) its immense mathematical beauty, and (2) the unparalleled precision to which its predictions have been verified again and again. Particularly fascinating for me were the predictions of quantum mechanics for individual particles, individual quantum systems. Surprisingly, the experimental realization of many of these fundamental phenomena has led to novel ideas for applications. Starting from my early experiments with neutrons, I later became interested in quantum entanglement, initially focusing on multi-particle entanglement like GHZ states. This work opened the experimental possibility to do quantum teleportation and quantum hyper-dense coding. The latter became the first entanglement-based quantum experiment breaking a classical limitation. One of the most fascinating phenomena is entanglement swapping, the teleportation of an entangled state. This phenomenon is fundamentally interesting because it can entangle two pairs of particles which do not share any common past. Surprisingly, it also became an important ingredient in a number of applications, including quantum repeaters which will connect future quantum computers with each other. Another application is entanglement-based quantum cryptography where I present some recent long-distance experiments. Entanglement swapping has also been applied in very recent so-called loophole-free tests of Bell's theorem. Within the physics community such loophole-free experiments are perceived as providing nearly definitive proof that local realism is untenable. While, out of principle, local realism can never be excluded entirely, the 2015 achievements narrow down the remaining possibilities for local realistic explanations of the quantum phenomenon of entanglement in a significant way. These experiments may go down in the history books of science. Future experiments will address particularly the freedom-of-choice loophole using cosmic sources of randomness. Such experiments confirm that unconditionally secure quantum cryptography is possible, since quantum cryptography based on Bell's theorem can provide unconditional security. The fact that the experiments were loophole-free proves that an eavesdropper cannot avoid detection in an experiment that correctly follows the protocol. I finally discuss some recent experiments with single-and entangled-photon states in higher dimensions. Such experiments realized quantum entanglement between two photons, each with quantum numbers beyond 10 000 and also simultaneous entanglement of two photons where each carries more than 100 dimensions. Thus they offer the possibility of quantum communication with more than one bit or qubit per photon. The paper concludes discussing Einstein's contributions and viewpoints of quantum mechanics. Even if some of his positions are not supported by recent experiments, he has to be given credit for the fact that his analysis of fundamental issues gave rise to developments which led to a new information technology. Finally, I reflect on some of the lessons learned by the fact that Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Dynamical suppression of decoherence in two-state quantum systems
Physical Review A, 1998
The dynamics of a decohering two-level system driven by a suitable control Hamiltonian is studied. The control procedure is implemented as a sequence of radiofrequency pulses that repetitively flip the state of the system, a technique that can be termed quantum "bang-bang" control after its classical analog. Decoherence introduced by the system's interaction with a quantum environment is shown to be washed out completely in the limit of continuous flipping and greatly suppressed provided the interval between the pulses is made comparable to the correlation time of the environment. The model suggests a strategy to fight against decoherence that complements existing quantum error-correction techniques. 03.65.-w, 03.67.-a, 05.30.-d I. INTRODUCTION
Effect of control procedures on the evolution of entanglement in open quantum systems
2011
The effect of a number of mechanisms designed to suppress decoherence in open quantum systems are studied with respect to their effectiveness at slowing down the loss of entanglement. The effect of photonic band-gap materials and frequency modulation of the system-bath coupling are along expected lines in this regard. However, other control schemes, like resonance fluorescence, achieve quite the contrary: increasing the strength of the control kills entanglement off faster. The effect of dynamic decoupling schemes on two qualitatively different system-bath interactions are studied in depth. Dynamic decoupling control has the expected effect of slowing down the decay of entanglement in a two-qubit system coupled to a harmonic oscillator bath under non-demolition interaction. However, non-trivial phenomena are observed when a Josephson charge qubit, strongly coupled to a random telegraph noise bath, is subject to decoupling pulses. The most striking of these reflects the resonance fluorescence scenario in that an increase in the pulse strength decreases decoherence but also speeds up the sudden death of entanglement. This demonstrates that the behaviour of decoherence and entanglement in time can be qualitatively different in the strongcoupling non-Markovian regime.
Bath-induced Control of two-qubit entanglement under Markovian noises
2008 47th IEEE Conference on Decision and Control, 2008
An entanglement control strategy is presented for two-qubit quantum systems against Markovian noises. This proposal is realized by a tunable coupling between qubits which is induced by varying the parameters of an intermediate squeezed field. Its applications to the independent and collective amplitude damping decoherence channels and their mixture show that entanglement can be efficiently enhanced.
Environment-Mediated Control of a Quantum System
Physical Review Letters, 2006
We prove that the environment induced entanglement between two non interacting, two-dimensional quantum systems S and P can be used to control the dynamics of S by means of the initial state of P. Using a simple, exactly solvable model, we show that both accessibility and controllability of S can be achieved under suitable conditions on the interaction of S and P with the environment.
Control of quantum states by decoherence
We propose a new technique to control quantum states by exploiting the decoherence due to the coupling with environment. With this technique we can get any target state, in a stable way and in an exponentially small time, as a stationary state of a semigroup (master equation) canonically derived from a microscopic Hamiltonian model. The stationary state of the system depends (i) on the interaction with the environment; (ii) on the initial state of the environment and it "inherits" some properties of it in a sense that will be explained in sec. 5 of the present paper. Moreover this is true not only for by thermal or vacuum environments but also for more general non-equilibrium environments. We prove that, by appropriately choosing this control parametes (interaction system-environment, initial environment state) one can drive the system to an arbitrary preassigned quantum state.
Decoherence and robustness of parity-dependent entanglement in the dynamics of a trapped ion
2001
We study the entanglement between the 2D vibrational motion and two ground state hyperfine levels of a trapped ion, Under particular conditions this entanglement depends on the parity of the total initial vibrational quanta. We study the robustness of this quantum coherence effect with respect to the presence of nondissipative sources of decoherence, and of an imperfect initial state preparation.
Controlling quantum systems in the presence of an environment
The ability to optimally control quantum systems in the presence of environmentally-induced decoherence is important for many physical and chemical problems. We discuss both theoretical and experimental aspects of optimal control of open quantum systems. The theoretical analysis is based on fundamental concepts of open-system controllability and control landscapes. These theoretical advances lay the groundwork for practical applications, including numerical simulations and experimental implementations of adaptive feedback control. In particular, the adaptive approach was utilized to implement coherent control of decoherence, which uses coherent (unitary) preparation and manipulation of an open quantum system to significantly alter its incoherent (non-unitary) dynamics caused by coupling to an environment. We also discuss other applications, including optimal dynamic discrimination of similar quantum systems and optimal control of high-fidelity quantum gates in the presence of decoherence.
arXiv (Cornell University), 2022
A common assumption in open quantum systems in general is that the noise induced by the environment, due to the continuous interaction between a quantum system and its environment, is responsible for the disappearance of quantum properties of this quantum system. Interestingly, we show that an environment can be engineered and controlled to direct an arbitrary quantum system towards a maximally entangled state and thus can be considered as a resource for quantum information processing. Barreiro et.al. [Nature 470, 486 (2011)] demonstrated this idea experimentally using an open-system quantum simulator up to five trapped ions. In this paper, we direct an arbitrary initial mixed state of two and four qubits, which is interacting with its environment, into a maximally entangled state. We use QASM simulator and also an IBM Q real processor, with and without errors mitigating, to investigate the effect of the noise on the preparation of the initial mixed state of the qubits in addition to the population of the target state.