Fitness Trade-offs Restrict the Evolution of Resistance to Amphotericin B (original) (raw)

Insights into an evolutionary strategy leading to antibiotic resistance

Metallo-β-lactamases (MBLs) with activity towards a broad-spectrum of β-lactam antibiotics have become a major threat to public health, not least due to their ability to rapidly adapt their substrate preference. In this study, the capability of the MBL AIM-1 to evade antibiotic pressure by introducing specific mutations was probed by two alternative methods, i.e. site-saturation mutagenesis (SSM) of active site residues and in vitro evolution. Both approaches demonstrated that a single mutation in AIM-1 can greatly enhance a pathogen's resistance towards broad spectrum antibiotics without significantly compromising the catalytic efficiency of the enzyme. Importantly, the evolution experiments demonstrated that relevant amino acids are not necessarily in close proximity to the catalytic centre of the enzyme. This observation is a powerful demonstration that MBLs have a diverse array of possibilities to adapt to new selection pressures, avenues that cannot easily be predicted from a crystal structure alone.

Defeating Pathogen Drug Resistance: Guidance from Evolutionary Theory

Evolution, 2008

Many of the greatest challenges in medicine and public health involve the evolution of drug resistance by pathogens. Recent advances in the theory of natural selection suggest that there are two broad classes of pathogen traits that can be targeted by drugs or vaccines. The first class, consisting of traits that benefit the individual organisms bearing them, causes a strong evolutionary response and the rapid emergence of drug resistance. The second class, consisting of traits that benefit groups of pathogen organisms including the individual provider, causes a weaker evolutionary response and less drug resistance. Although most previous drug development has targeted the first class, it would be advantageous to focus on the second class as targets for drug and vaccine development. Specific examples and test cases are discussed.

Genetic and Genomic Architecture of the Evolution of Resistance to Antifungal Drug Combinations

PLoS Genetics, 2013

The evolution of drug resistance in fungal pathogens compromises the efficacy of the limited number of antifungal drugs. Drug combinations have emerged as a powerful strategy to enhance antifungal efficacy and abrogate drug resistance, but the impact on the evolution of drug resistance remains largely unexplored. Targeting the molecular chaperone Hsp90 or its downstream effector, the protein phosphatase calcineurin, abrogates resistance to the most widely deployed antifungals, the azoles, which inhibit ergosterol biosynthesis. Here, we evolved experimental populations of the model yeast Saccharomyces cerevisiae and the leading human fungal pathogen Candida albicans with azole and an inhibitor of Hsp90, geldanamycin, or calcineurin, FK506. To recapitulate a clinical context where Hsp90 or calcineurin inhibitors could be utilized in combination with azoles to render resistant pathogens responsive to treatment, the evolution experiment was initiated with strains that are resistant to azoles in a manner that depends on Hsp90 and calcineurin. Of the 290 lineages initiated, most went extinct, yet 14 evolved resistance to the drug combination. Drug target mutations that conferred resistance to geldanamycin or FK506 were identified and validated in five evolved lineages. Whole-genome sequencing identified mutations in a gene encoding a transcriptional activator of drug efflux pumps, PDR1, and a gene encoding a transcriptional repressor of ergosterol biosynthesis genes, MOT3, that transformed azole resistance of two lineages from dependent on calcineurin to independent of this regulator. Resistance also arose by mutation that truncated the catalytic subunit of calcineurin, and by mutation in LCB1, encoding a sphingolipid biosynthetic enzyme. Genome analysis revealed extensive aneuploidy in four of the C. albicans lineages. Thus, we identify molecular determinants of the transition of azole resistance from calcineurin dependence to independence and establish multiple mechanisms by which resistance to drug combinations evolves, providing a foundation for predicting and preventing the evolution of drug resistance.

Revisiting Antibiotic Resistance: Mechanistic Foundations to Evolutionary Outlook

Antibiotics

Antibiotics are the pivotal pillar of contemporary healthcare and have contributed towards its advancement over the decades. Antibiotic resistance emerged as a critical warning to public wellbeing because of unsuccessful management efforts. Resistance is a natural adaptive tool that offers selection pressure to bacteria, and hence cannot be stopped entirely but rather be slowed down. Antibiotic resistance mutations mostly diminish bacterial reproductive fitness in an environment without antibiotics; however, a fraction of resistant populations ‘accidentally’ emerge as the fittest and thrive in a specific environmental condition, thus favouring the origin of a successful resistant clone. Therefore, despite the time-to-time amendment of treatment regimens, antibiotic resistance has evolved relentlessly. According to the World Health Organization (WHO), we are rapidly approaching a ‘post-antibiotic’ era. The knowledge gap about antibiotic resistance and room for progress is evident and...

Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance

Trends in Microbiology, 2018

Antibiotics target essential cellular functions but bacteria can become resistant by acquiring either exogenous resistance genes or chromosomal mutations. Resistance mutations typically occur in genes encoding essential functions, which causes resistance mutations to be generally detrimental in the absence of drugs. However, bacteria can reduce this handicap by acquiring additional mutations, known as compensatory mutations. Genetic interactions (epistasis) either with the background or between resistances (in multi-resistant bacteria) dramatically affect the fitness cost of antibiotic resistance and its compensation, therefore shaping dissemination of antibiotic resistance mutations. This review summarizes current knowledge on the evolutionary mechanisms influencing maintenance of resistance mediated by chromosomal mutations, focusing on their fitness cost, compensatory evolution and epistasis and the effect of the environment on these processes.

Fitness Landscapes Reveal Simple Strategies for Steering Evolution to Minimize Antibiotic Resistance

2016

The evolution of antibiotic resistance presents a practical and theoretical challenge: the design of strategies that limit the risk of evolved resistance while effectively treating current patients. Sequentially cycling antibiotics has been proposed as a way to slow the evolution of resistance by reducing the extent of adaptation to a given drug, and clinical trials have demonstrated its effectiveness in some settings. Empirical fitness landscapes in theory allow the sequence of drugs to be refined to maximize tradeoffs between drugs and thereby slow adaptation even further. Using the measured growth rates of 16 genotypes ofEscherichia coliin the presence ofβ-lactam antibiotics, we test an adaptive strategy, based on a Markov chain transition matrix, to select drug sequences that continuously minimize resistance. Cycling is never selected over the long term. Instead, monotherapy with the antibiotic that permits the least growth in its landscape’s absorbing state is rapidly selected ...

Compatibility of Evolutionary Responses to Constituent Antibiotics Drive Resistance Evolution to Drug Pairs

Molecular Biology and Evolution, 2021

Antibiotic combinations are considered a relevant strategy to tackle the global antibiotic resistance crisis since they are believed to increase treatment efficacy and reduce resistance evolution (WHO treatment guidelines for drug-resistant tuberculosis: 2016 update.). However, studies of the evolution of bacterial resistance to combination therapy have focused on a limited number of drugs and have provided contradictory results (Lipsitch, Levin BR. 1997; Hegreness et al. 2008; Munck et al. 2014). To address this gap in our understanding, we performed a large-scale laboratory evolution experiment, adapting eight replicate lineages of Escherichia coli to a diverse set of 22 different antibiotics and 33 antibiotic pairs. We found that combination therapy significantly limits the evolution of de novode novo resistance in E. coli, yet different drug combinations vary substantially in their propensity to select for resistance. In contrast to current theories, the phenotypic features of d...

Evolutionary Trajectories to Antibiotic Resistance

Annual Review of Microbiology, 2017

The ability to predict the evolutionary trajectories of antibiotic resistance would be of great value in tailoring dosing regimens of antibiotics so as to maximize the duration of their usefulness. Useful prediction of resistance evolution requires information about (a) the mutation supply rate, (b) the level of resistance conferred by the resistance mechanism, (c) the fitness of the antibiotic-resistant mutant bacteria as a function of drug concentration, and (d) the strength of selective pressures. In addition, processes including epistatic interactions and compensatory evolution, coselection of drug resistances, and population bottlenecks and clonal interference can strongly influence resistance evolution and thereby complicate attempts at prediction. Currently, the very limited quantitative data on most of these parameters severely limit attempts to accurately predict trajectories of resistance evolution.

Antibiotic Resistance Increases Evolvability and Maximizes Opportunities Across Fitness Landscapes

2019

Antibiotic resistance continues to grow as a public health problem. One of the reasons for this continued growth is that resistance to antibiotics is strongly selected for in the presence of antibiotics and weakly selected against after their removal. This is frequently thought to be due to the effects of compensatory mutations. However, compensatory mutations are often not found in clinically relevant strains of antibiotic resistant pathogens. Here, we conduct experiments in vitro that highlight the role that fine scale differences in environment play in the maintenance of populations after selection for resistance. We show that differences in the mode of growth, dictated by environmental factors, are capable of reliably changing the force. CC-BY-NC-ND 4.