Thioredoxin-Interacting Protein as a Novel Potential Therapeutic Target in Diabetes Mellitus and Its Underlying Complications (original) (raw)
Related papers
Role of Thioredoxin-Interacting Protein in Diseases and Its Therapeutic Outlook
International Journal of Molecular Sciences, 2021
Thioredoxin-interacting protein (TXNIP), widely known as thioredoxin-binding protein 2 (TBP2), is a major binding mediator in the thioredoxin (TXN) antioxidant system, which involves a reduction-oxidation (redox) signaling complex and is pivotal for the pathophysiology of some diseases. TXNIP increases reactive oxygen species production and oxidative stress and thereby contributes to apoptosis. Recent studies indicate an evolving role of TXNIP in the pathogenesis of complex diseases such as metabolic disorders, neurological disorders, and inflammatory illnesses. In addition, TXNIP has gained significant attention due to its wide range of functions in energy metabolism, insulin sensitivity, improved insulin secretion, and also in the regulation of glucose and tumor suppressor activities in various cancers. This review aims to highlight the roles of TXNIP in the field of diabetology, neurodegenerative diseases, and inflammation. TXNIP is found to be a promising novel therapeutic targe...
FASEB Journal, 2008
Pancreatic beta-cell loss through apoptosis represents a key factor in the pathogenesis of diabetes; however, no effective approaches to block this process and preserve endogenous beta-cell mass are currently available. To study the role of thioredoxin-interacting protein (TXNIP), a proapoptotic beta-cell factor we recently identified, we used HcB-19 (TXNIP nonsense mutation) and beta-cell-specific TX-NIP knockout (bTKO) mice. Interestingly, HcB-19 mice demonstrate increased adiposity, but have lower blood glucose levels and increased pancreatic beta-cell mass (as assessed by morphometry). Moreover, HcB-19 mice are resistant to streptozotocin-induced diabetes. When intercrossed with obese, insulin-resistant, and diabetic mice, double-mutant BTBRlep ob/ob txnip hcb/hcb are even more obese, but are protected against diabetes and beta-cell apoptosis, resulting in a 3-fold increase in beta-cell mass. Beta-cell-specific TXNIP deletion also enhanced beta-cell mass (P<0.005) and protected against diabetes, and terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) revealed a ϳ50-fold reduction in beta-cell apoptosis in streptozotocin-treated bTKO mice. We further discovered that TXNIP deficiency induces Akt/Bcl-xL signaling and inhibits mitochondrial beta-cell death, suggesting that these mechanisms may mediate the beta-cell protective effects of TXNIP deficiency. These results suggest that lowering beta-cell TXNIP expression could serve as a novel strategy for the treatment of type 1 and type 2 diabetes by promoting endogenous beta-cell survival.
Thioredoxin-Interacting Protein: A Critical Link Between Glucose Toxicity and -Cell Apoptosis
Diabetes, 2008
OBJECTIVE—In diabetes, glucose toxicity affects different organ systems, including pancreatic islets where it leads to β-cell apoptosis, but the mechanisms are not fully understood. Recently, we identified thioredoxin-interacting protein (TXNIP) as a proapoptotic β-cell factor that is induced by glucose, raising the possibility that TXNIP may play a role in β-cell glucose toxicity. RESEARCH DESIGN AND METHODS—To assess the effects of glucose on TXNIP expression and apoptosis and define the role of TXNIP, we used INS-1 β-cells; primary mouse islets; obese, diabetic BTBR.ob mice; and a unique mouse model of TXNIP deficiency (HcB-19) that harbors a natural nonsense mutation in the TXNIP gene. RESULTS—Incubation of INS-1 cells at 25 mmol/l glucose for 24 h led to an 18-fold increase in TXNIP protein, as assessed by immunoblotting. This was accompanied by increased apoptosis, as demonstrated by a 12-fold induction of cleaved caspase-3. Overexpression of TXNIP revealed that TXNIP induces ...
Journal of Experimental Medicine, 1998
The cytotoxicity of reactive oxygen intermediates (ROIs) has been implicated in the destruction of pancreatic  cells in insulin-dependent diabetes mellitus (IDDM). Thioredoxin (TRX), a redox (reduction/oxidation)-active protein, has recently been shown to protect cells from oxidative stress and apoptosis. To elucidate the roles of oxidative stress in the development of autoimmune diabetes in vivo, we produced nonobese diabetic transgenic mice that overexpress TRX in their pancreatic  cells. In these transgenic mice, the incidence of diabetes was markedly reduced, whereas the development of insulitis was not prevented. Moreover, induction of diabetes by streptozotocin, an ROI-generating agent, was also attenuated by TRX overexpression in  cells. This is the first direct demonstration that an antioxidative and antiapoptotic protein protects  cells in vivo against both autoimmune and drug-induced diabetes. Our results strongly suggest that oxidative stress plays an essential role in the destruction of  cells by infiltrating inflammatory cells in IDDM.
Journal of Experimental Medicine, 1998
The cytotoxicity of reactive oxygen intermediates (ROIs) has been implicated in the destruction of pancreatic β cells in insulin-dependent diabetes mellitus (IDDM). Thioredoxin (TRX), a redox (reduction/oxidation)-active protein, has recently been shown to protect cells from oxidative stress and apoptosis. To elucidate the roles of oxidative stress in the development of autoimmune diabetes in vivo, we produced nonobese diabetic transgenic mice that overexpress TRX in their pancreatic β cells. In these transgenic mice, the incidence of diabetes was markedly reduced, whereas the development of insulitis was not prevented. Moreover, induction of diabetes by streptozotocin, an ROI-generating agent, was also attenuated by TRX overexpression in β cells. This is the first direct demonstration that an antioxidative and antiapoptotic protein protects β cells in vivo against both autoimmune and drug-induced diabetes. Our results strongly suggest that oxidative stress plays an essential role i...
Antioxidants & Redox Signaling, 2008
The authors previously established a transgenic mouse line in the type 1 diabetes model, NOD mouse, in which thioredoxin (TRX), a redox protein, is overexpressed in pancreatic  cells, and found that TRX overexpression slows the progression of type 1 diabetes. Recent reports on type 2 diabetes suggest that oxidative stress also degrades the function of  cells. To elucidate whether TRX overexpression can prevent progressive  cell failure from oxidative stress in type 2 diabetes, the authors transferred the TRX transgene from the NOD mouse onto a mouse model of type 2 diabetes, the db/db mouse. The progression of hyperglycemia and the reduction of body weight gain and insulin content of the db/db mouse were significantly suppressed by the TRX expression. Furthermore, TRX suppressed the reduction of Pdx-1 and MafA expression in the  cells, which may be one of the cellular mechanisms for protecting  cells from losing their insulin-secreting capacity. These results showed that TRX can protect  cells from destruction not only in type 1 but also in type 2 diabetes, and that they provide evidence that oxidative stress plays a crucial role in the deterioration of  cell function during the progression of type 2 diabetes. Antioxid. Redox Signal. 10,[43][44][45][46][47][48][49]
Antioxidants & Redox Signaling, 2008
The authors previously established a transgenic mouse line in the type 1 diabetes model, NOD mouse, in which thioredoxin (TRX), a redox protein, is overexpressed in pancreatic  cells, and found that TRX overexpression slows the progression of type 1 diabetes. Recent reports on type 2 diabetes suggest that oxidative stress also degrades the function of  cells. To elucidate whether TRX overexpression can prevent progressive  cell failure from oxidative stress in type 2 diabetes, the authors transferred the TRX transgene from the NOD mouse onto a mouse model of type 2 diabetes, the db/db mouse. The progression of hyperglycemia and the reduction of body weight gain and insulin content of the db/db mouse were significantly suppressed by the TRX expression. Furthermore, TRX suppressed the reduction of Pdx-1 and MafA expression in the  cells, which may be one of the cellular mechanisms for protecting  cells from losing their insulin-secreting capacity. These results showed that TRX can protect  cells from destruction not only in type 1 but also in type 2 diabetes, and that they provide evidence that oxidative stress plays a crucial role in the deterioration of  cell function during the progression of type 2 diabetes. Antioxid. Redox Signal. 10, 43-49.
Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus
Journal of clinical biochemistry and nutrition, 2012
Thioredoxin binding protein -2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein -2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein -2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein -2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein -2 in metabolic control. Enhancement of thioredoxin binding protein -2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein -2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein -2-like inducible membrane...
Diabetologia, 2009
Aims/hypothesis In type 2 diabetes, glucose toxicity leads to beta cell apoptosis with decreased beta cell mass as a consequence. Thioredoxin-interacting protein (TXNIP) is a critical mediator of glucose-induced beta cell apoptosis. Since hyperglycaemia leads to elevated serum insulin, we hypothesised that insulin is involved in the regulation of TXNIP protein levels in beta cells. Methods We studied the production of TXNIP in INS-1E beta cells and in islets of Psammomys obesus, an animal model of type 2 diabetes, in response to glucose and different modulators of insulin secretion. Results TXNIP production was markedly augmented in islets from diabetic P. obesus and in beta cells exposed to high glucose concentration. In contrast, adding insulin to the culture medium or stimulating insulin secretion with different secretagogues suppressed TXNIP. Inhibition of glucose and fatty acid-stimulated insulin secretion with diazoxide increased TXNIP production in beta cells. Nitric oxide (NO), a repressor of TXNIP, enhanced insulin signal transduction, whereas inhibition of NO synthase abolished its activation, suggesting that TXNIP inhibition by NO is mediated by stimulation of insulin signalling. Treatment of beta cells chronically exposed to high glucose with insulin reduced beta cell apoptosis. Txnip knockdown mimicking the effect of insulin prevented glucose-induced beta cell apoptosis. Conclusions/interpretation Insulin is a potent repressor of TXNIP, operating a negative feedback loop that restrains the stimulation of TXNIP by chronic hyperglycaemia. Repression of TXNIP by insulin is probably an important compensatory mechanism protecting beta cells from oxidative damage and apoptosis in type 2 diabetes.
TXNIP in Metabolic Regulation: Physiological Role and Therapeutic Outlook
Current Drug Targets, 2017
Background & Objective: Thioredoxin-interacting protein (TXNIP) also known as thioredoxin binding protein-2 is a ubiquitously expressed protein that interacts and negatively regulates expression and function of Thioredoxin (TXN). Over the last few years, TXNIP has attracted considerable attention due to its wide-ranging functions impacting several aspects of energy metabolism. TXNIP acts as an important regulator of glucose and lipid metabolism through pleiotropic actions including regulation of β-cell function, hepatic glucose production, peripheral glucose uptake, adipogenesis, and substrate utilization. Overexpression of TXNIP in animal models has been shown to induce apoptosis of pancreatic β-cells, reduce insulin sensitivity in peripheral tissues like skeletal muscle and adipose, and decrease energy expenditure. On the contrary, TXNIP deficient animals are protected from diet induced insulin resistance and type 2 diabetes. Summary: Consequently, targeting TXNIP is thought to offer novel therapeutic opportunity and TXNIP inhibitors have the potential to become a powerful therapeutic tool for the treatment of diabetes mellitus. Here we summarize the current state of our understanding of TXNIP biology, highlight its role in metabolic regulation and raise critical questions that could help future research to exploit TXNIP as a therapeutic target.