Umair et al 2018 Clinical Genetics (original) (raw)

Abstract

Peripheral blood samples were obtained from 2 affected (IV-2, IV-5) and 3 unaffected individuals (III-1, IV-3, IV-4) (Figure 1A). Genomic DNA was extracted and quantified using standard procedures.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (25)

  1. Duijf PH, van Bokhoven H. Brunner HG. Pathogenesis of split-hand/ split-foot malformation. Hum Mol Genet. 2003;1:R51-R60.
  2. Elliott AM, Evans JA. The association of split hand foot malformation (SHFM) and congenital heart defects. Birth Defects Res A Clin Mol Ter- atol. 2008;82:425-434.
  3. Scherer SW, Poorkaj P, Allen T, et al. Fine mapping of the autosomal dominant split hand/split foot locus on chromosome 7 band q21.3- q22.1. Am J Hum Genet. 1994;55:12-20.
  4. Faiyaz ul Haque M, Uhlhaas S, Knapp M, et al. X chromosomal split- hand/split-foot anomaly maps to Xq26. Hum Genet. 1993;91:17-19.
  5. Nunes ME, Schutt G, Kapur RP, et al. A second autosomal split hand/ split foot locus maps to chromosome 10q24-q25. Hum Mol Genet. 1995;4:2165-2170.
  6. Ianakiev P, Kilpatrick MW, Toudjarska I, Basel D, Beighton P, Tsipouras P. Split-hand/ split-foot malformation is caused by muta- tions in the p63 gene on 3q27. Am J Hum Genet. 2000;67:59-66.
  7. Boles RG, Pober BR, Gibson LH, et al. Deletion of chromosome 2q24- q31 causes characteristic digital anomalies: case report and review. Am J Med Genet. 1995;55:155-160.
  8. Ugur SA, Tolun A. Homozygous WNT10B mutation and complex inheritance in split-hand/foot malformation. Hum Mol Genet. 2008;17:2644-2653.
  9. Gurnett CA, Dobbs MB, Nordsieck EJ, et al. Evidence for an addi- tional locus for split hand/foot malformation in chromosome region 8q21.11-q22.3. Am J Med Genet A. 2006;140:1744-1748.
  10. Ullah A, Hamid A, Umair M, Ahmad W. A novel heterozygous intra- genic sequence variant in DLX6 probably underlies first case of auto- somal dominant split hand/foot malformation type 1. Mol Syndromol. 2017;8:79-84.
  11. Spielmann M, Kakar N, Tayebi N, et al. Exome sequencing and CRISPR/Cas genome editing identify mutations of ZAK as a cause of limb defects in humans and mice. Genome Res. 2016;26(2):183-191.
  12. Naveed M, Al-Ali MT, Murthy SK, et al. Ectrodactyly with aplasia of long bones in a large inbred Arab family with an apparent autosomal dominant inheritance and reduced penetrance: clinical and genetic analysis. Am J Med Genet A. 2006;140:1440-1446.
  13. Naveed M, Nath SK, Gaines M, et al. Genomewide linkage scan for SHFM with long-bone deficiency in a large Arab family identifies two novel susceptibility loci on chromosomes 1q42.2-q43 and 6q14.1. Am J Hum Genet. 2007;80:105-111.
  14. Lezirovitz K, Maestrelli SR, Cotrim NH, Otto PA, Pearson PL, Mingroni-Netto RC. A novel locus for SHFM associated with tibial hemimelia (SHFLD syndrome) maps to chromosome region 17p13.1- 17p13.3. Hum Genet. 2008;123:625-631.
  15. Umair M, Hassan A, Jan A, et al. Homozygous sequence variants in the FKBP10 gene underlie osteogenesis imperfecta in consanguine- ous families. J Hum Genet. 2016;61:207-213.
  16. Ullah A, Kalsoom UE, Umair M, et al. Exome sequencing revealed a novel splice site variant in the ALX1 gene underlying frontonasal dys- plasia. Clin Genet. 2016;91:494-498.
  17. Aten E, den Hollander N, Ruivenkamp C, et al. Split hand-foot malfor- mation, tetralogy of fallot, mental retardation and a 1 Mb 19p deletion-evidence for further heterogeneity? Am J Med Genet A. 2009;149A:975-981.
  18. Bens S, Haake A, Tönnies H, et al. A de novo 1.1Mb microdeletion of chromosome 19p13.11 provides indirect evidence for EPS15L1 to be a strong candidate for split hand split foot malformation. Eur J Med Genet. 2011;54:e501-e504.
  19. Hsueh YL, YN S, Lin HY, Lee CN, Shih JC. Array comparative genomic hybridization characterization of multiple interstitial deletions involv- ing 7p22.1, 7q11.23, 7q21.3-q22.1, 19p13.3-p12, and 19q13.11- q13.43 in a fetus associated with split hand-foot malformation. Role of EPS15L1 in pathogenesis. Taiwan J Obstet Gynecol. 2015;54:455-458.
  20. Khan S, Basit S, Zimri FK, et al. A novel homozygous missense muta- tion in WNT10B in familial split-hand/foot malformation. Clin Genet. 2012;82(1):48-55.
  21. Wong WT, Schumacher C, Salcini AE, et al. A protein-binding domain, EH, identified in the receptor tyrosine kinase substrate Eps15 and conserved in evolution. Proc Natl Acad Sci U S A. 1995;92: 9530-9534.
  22. Clifford RJ, Schupbach T. Coordinately and differentially mutable activities of torpedo, the Drosophila melanogaster homolog of the ver- tebrate EGF receptor gene. Genetics. 1989;123:771-787.
  23. Simcox A. Differential requirement for EGF-like ligands in Drosophila wing development. Mech Dev. 1997;62:41-50.
  24. Omi M, Fisher M, Maihle NJ, Dealy CN. Studies on epidermal growth factor receptor signaling in vertebrate limb patterning. Dev Dyn. 2005;233:288-300.
  25. Seto ML, Nunes ME, Macarthur CA, Cunningham ML. Pathogenesis of ectrodactyly in the Dactylaplasia mouse: aberrant cell death of the apical ectodermal ridge. Teratology. 1997;56:262-270.