In silico Evolution of Early Metabolism (original) (raw)
We developed a simulation tool for investigating the evolution of early metabolism, allowing us to speculate on the formation ofmetabolic pathways fromcatalyzed chemical reactions and development of characteristic properties. Our model consists of a protocellular entity with a simple RNA-based genetic system and an evolving metabolism of ribozymecatalyzed enzymes that manipulate a rich underlying chemistry. Ensuring an almost open-ended and fairly realistic simulation is crucial for understanding the first steps in metabolic evolution. We show here, how our simulation tool can be helpful in arguing for or against hypotheses on the evolution of metabolic pathways. We demonstrate that seemingly mutually exclusive hypotheses may well be compatible when we take into account that different processes dominate different phases in the evolution of a metabolic system. Our results suggest that forward evolution shapes metabolic network in the very early steps of evolution. In later and more complex stages, enzyme recruitment supersedes forward evolution, keeping a core set of pathways from the early phase.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.