CHD1 Motor Protein Is Required for Deposition of Histone Variant H3.3 into Chromatin in Vivo (original) (raw)

Double chromodomains cooperate to recognize the methylated histone H3 tail

Nature, 2005

Chromodomains are modules implicated in the recognition of lysine-methylated histone tails and nucleic acids. CHD (for chromo-ATPase/helicase-DNA-binding) proteins regulate ATP-dependent nucleosome assembly and mobilization through their conserved double chromodomains and SWI2/SNF2 helicase/ATPase domain. The Drosophila CHD1 localizes to the interbands and puffs of the polytene chromosomes, which are classic sites of transcriptional activity. Other CHD isoforms (CHD3/4 or Mi-2) are

The evolutionary history of histone H3 suggests a deep eukaryotic root of chromatin modifying mechanisms

BMC Evolutionary Biology, 2010

Background: The phenotype of an organism is an outcome of both its genotype, encoding the primary sequence of proteins, and the developmental orchestration of gene expression. The substrate of gene expression in eukaryotes is the chromatin, whose fundamental units are nucleosomes composed of DNA wrapped around each two of the core histone types H2A, H2B, H3 and H4. Key regulatory steps involved in the determination of chromatin conformations are posttranslational modifications (PTM) at histone tails as well as the assembly of histone variants into nucleosomal arrays. Although the mechanistic background is fragmentary understood, it appears that the chromatin signature of metazoan cell types is inheritable over generations. Even less understood is the conservation of epigenetic mechanisms among eukaryotes and their origins.

Nucleosomal histone kinase-1 phosphorylates H2A Thr 119 during mitosis in the early Drosophila embryo

Genes & Development, 2004

Posttranslational histone modifications are important for the regulation of many biological phenomena. Here, we show the purification and characterization of nucleosomal histone kinase-1 (NHK-1). NHK-1 has a high affinity for chromatin and phosphorylates a novel site, Thr 119, at the C terminus of H2A. Notably, NHK-1 specifically phosphorylates nucleosomal H2A, but not free H2A in solution. In Drosophila embryos, phosphorylated H2A Thr 119 is found in chromatin, but not in the soluble core histone pool. Immunostaining of NHK-1 revealed that it goes to chromatin during mitosis and is excluded from chromatin during S phase. Consistent with the shuttling of NHK-1 between chromatin and cytoplasm, H2A Thr 119 is phosphorylated during mitosis but not in S phase. These studies reveal that NHK-1-catalyzed phosphorylation of a conserved serine/threonine residue in H2A is a new component of the histone code that might be related to cell cycle progression.

A Sequence in the Drosophila H3-H4 Promoter Triggers Histone Locus Body Assembly and Biosynthesis of Replication-Coupled Histone mRNAs

Developmental Cell, 2013

Compartmentalization of RNA biosynthetic factors into nuclear bodies (NBs) is a ubiquitous feature of eukaryotic cells. How NBs initially assemble and ultimately affect gene expression remains unresolved. The histone locus body (HLB) contains factors necessary for replication-coupled histone messenger RNA transcription and processing and associates with histone gene clusters. Using a transgenic assay for ectopic Drosophila HLB assembly, we show that a sequence located between, and transcription from, the divergently transcribed H3-H4 genes nucleates HLB formation and activates other histone genes in the histone gene cluster. In the absence of transcription from the H3-H4 promoter, ''proto-HLBs'' (containing only a subset of HLB components) form, and the adjacent histone H2a-H2b genes are not expressed. Proto-HLBs also transiently form in mutant embryos with the histone locus deleted. We conclude that HLB assembly occurs through a stepwise process involving stochastic interactions of individual components that localize to a specific sequence in the H3-H4 promoter.

Transcriptional activation triggers deposition and removal of the histone variant H3.3

Genes & Development, 2005

DNA in eukaryotic cells is packaged into nucleosomes, the structural unit of chromatin. Both DNA and bulk histones are extremely long-lived, because old DNA strands and histones are retained when chromatin duplicates. In contrast, we find that the Drosophila HSP70 genes rapidly lose histone H3 and acquire variant H3.3 histones as they are induced. Histone replacement does not occur at artificial HSP70 promoter arrays, demonstrating that transcription is required for H3.3 deposition. The H3.3 histone is enriched in all active chromatin and throughout large transcription units, implying that deposition occurs during transcription elongation. Strikingly, we observed that the stability of chromatin-bound H3.3 differs between loci: H3.3 turns over at continually active rDNA genes, but becomes stable at induced HSP70 genes that have shut down. We conclude that H3.3 deposition is coupled to transcription, and continues while a gene is active. Repeated histone replacement suggests a mechani...

Histone H1 variants differentially inhibit DNA replication through an affinity for chromatin mediated by their carboxyl-terminal domains

Gene, 2002

Multiple forms of histone H1 are found in most mammalian tissues, and diversity in their temporal and spatial expression likely corresponds to diversity in function. Here, using Xenopus egg extracts, we show that while the somatic H1s significantly inhibit DNA replication in Xenopus sperm nuclei, little or no inhibition is seen in the case of the testes-specific variant, H1t. We suggest that differences in H1-chromatin interactions might explain some of the diversity in H1 function. To demonstrate this, we show that the somatic H1 variants preferentially assemble into chromatin relative to H1t. Differences in chromatin structure are seen depending on whether chromatin assembly occurs in the presence of somatic H1s or H1t. These data suggest that the mechanistic basis for some of the functional differences of H1 variants lies in their relative affinity for chromatin. Using a series of domain-switch mutants of H1 0 and H1t we identify the H1 carboxylterminal domains as the domains responsible for the differential affinity for chromatin and, concurrently, for the differential effects of H1 variants upon DNA replication. q

Histone supply: Multitiered regulation ensures chromatin dynamics throughout the cell cycle

The Journal of Cell Biology

As the building blocks of chromatin, histones are central to establish and maintain particular chromatin states associated with given cell fates. Importantly, histones exist as distinct variants whose expression and incorporation into chromatin are tightly regulated during the cell cycle. During S phase, specialized replicative histone variants ensure the bulk of the chromatinization of the duplicating genome. Other non-replicative histone variants deposited throughout the cell cycle at specific loci use pathways uncoupled from DNA synthesis. Here, we review the particular dynamics of expression, cellular transit, assembly, and disassembly of replicative and non-replicative forms of the histone H3. Beyond the role of histone variants in chromatin dynamics, we review our current knowledge concerning their distinct regulation to control their expression at different levels including transcription, posttranscriptional processing, and protein stability. In light of this unique regulatio...

Developmental and Cell Cycle Regulation of the Drosophila Histone Locus Body

Molecular Biology of the Cell, 2007

Cyclin E/Cdk2 is necessary for replication-dependent histone mRNA biosynthesis, but how it controls this process in early development is unknown. We show that in Drosophila embryos the MPM-2 monoclonal antibody, raised against a phosphoepitope from human mitotic cells, detects Cyclin E/Cdk2-dependent nuclear foci that colocalize with nascent histone transcripts. These foci are coincident with the histone locus body (HLB), a Cajal body-like nuclear structure associated with the histone locus and enriched in histone pre-mRNA processing factors such as Lsm11, a core component of the U7 small nuclear ribonucleoprotein. Using MPM-2 and anti-Lsm11 antibodies, we demonstrate that the HLB is absent in the early embryo and occurs when zygotic histone transcription begins during nuclear cycle 11. Whereas the HLB is found in all cells after its formation, MPM-2 labels the HLB only in cells with active Cyclin E/Cdk2. MPM-2 and Lsm11 foci are present in embryos lacking the histone locus, and MPM-2 foci are present in U7 mutants, which cannot correctly process histone pre-mRNA. These data indicate that MPM-2 recognizes a Cdk2-regulated protein that assembles into the HLB independently of histone mRNA biosynthesis. HLB foci are present in histone deletion embryos, although the MPM-2 foci are smaller, and some Lsm11 foci are not associated with MPM-2 foci, suggesting that the histone locus is important for HLB integrity.

ATP-dependent Nucleosome Remodeling and Histone Hyperacetylation Synergistically Facilitate Transcription of Chromatin

Journal of Biological Chemistry, 2001

Drosophila nucleosome remodeling factor (NURF) is an ISWI-containing protein complex that facilitates nucleosome mobility and transcriptional activation in an ATP-dependent manner. Numerous studies have implicated histone acetylation in transcriptional activation. We investigated the relative contributions of these two chromatin modifications to transcription in vitro of a chromatinized adenovirus E4 minimal promoter that contains binding sites for the GAL4-VP16 activator. We found that NURF could remodel chromatin and stimulate transcription irrespective of the acetylation status of histones. In contrast, hyperacetylation of histones in the absence of NURF was unable to stimulate transcription, suggesting that NURF-dependent chromatin remodeling is an obligatory step in E4 promoter activation. When chromatin templates were first hyperacetylated and then incubated with NURF, significantly greater transcription stimulation was observed. The results suggest that changes in chromatin induced by acetylation of histones and the mobilization of nucleosomes by NURF combine synergistically to facilitate transcription. Experiments using single and multiple rounds of transcription indicate that these chromatin modifications stimulate transcription preinitiation as well as reinitiation.