Location Acquisition and Applications in Mobile and Ad-Hoc Environments (original) (raw)
Related papers
Radio Communications, 2010
An ad hoc 1 network is defined as a decentralised wireless network that is set up on-the-fly for a specific purpose. These networks were proposed years ago for military use, with the purpose of communicating devices in a highly constrained scenario. Under such a network, devices join and leave the network dynamically; thus, it cannot be expected to have any kind of network infrastructure. This wish for decentralised on-the-fly networks has subsequently expanded to cover several fields besides the military. Today, there are several mobile services requiring the self-organising capabilities that ad hoc networks offer. Examples include packet tracking, online-gaming, and measuring systems, among others. Ad hoc networks have obvious benefits for mobile services, but they also introduce new issues that regular network protocols cannot cope with, including optimum routing, network fragmentation, reduced calculation power, energy-constrained terminals, etc. In ad hoc networks, positioning takes a significant role, mainly due to the on-the-fly condition. In fact, several services require nodes to know the position of the customers in order to perform their duty properly. Wireless sensor networks concentrate most of the services that need positioning to perform their duty. Such networks constitute a subset of ad hoc networks involving dense topologies operating in an ad hoc fashion, and they are composed of small, energy and computation constrained terminals. In ad hoc networks, and especially in wireless sensor networks, nodes are spread over a certain area without a precise knowledge about the topology. In fact, this topology is variable. Accordingly, there are several unknowns (e.g., node density and coverage, network's energy map, the presence of shadowed zones, nodes' placement in the network coverage area) that are likely to constrain the performance of ad hoc services. Knowledge of the terminals' locations can substantially improve the service performance. Positioning is not only important for the service provisioning; it is also crucial in the ad hoc protocol stack development. Due to the changes in the topology and the lack of communication infrastructure, ad hoc protocols have to address several issues not present in regular cellular networks. Routing is one of the best examples of the dependence of ad hoc networks on positioning. Studies such as (Stojmenovic, 2002) demonstrate that only position-based routing protocols are scalable, i.e., able to cope with a higher density of 1 "Ad hoc" is actually a Latin phrase that means "to this (thing, purpose, end, etc.)" 31 www.intechopen.com Radio Communications 620 nodes in the network. The same seems to apply to other management and operation tasks in ad hoc networks. 1.1 The Location problem in ad hoc networks Nodes in an ad hoc network can be grouped into three categories according to the positioning capabilities: beacon nodes, settled nodes, and unknown nodes. Beacon nodes, also known as anchors or landmarks, are those able to compute their position on their own, i.e., without using an ad hoc location algorithm. Accordingly, they implement at least one location technique (e.g., GPS, map matching), which can be used as standalone. Beacon nodes usually constitute the reference frame necessary to set up a location algorithm. Unknown nodes are those nodes that do not know their position yet. When an ad hoc network is set up, all nodes except the beacon nodes are unknown. Settled nodes are unknown nodes that are able to compute their position from the information that they exchange with beacon nodes and/or other settled nodes. The purpose of the ad hoc location system is thus to position as many nodes as possible, turning them from unknown to settled nodes (Bourkerche et al., 2007). Location systems in ad hoc networks function in two steps: local positioning and positioning algorithm. The former is responsible for computing the position of an unknown node from the metrics gathered. The second step consists of the positioning algorithm, which indicates how the position information is managed in order to maximise the number of nodes being settled. 1.2 Measuring the performance of location solutions Performance of location solutions in ad hoc networks can be computed according to several parameters. The main ones are presented below. 1.2.1 Accuracy Ad hoc positioning requires good accuracy since most of the networks in ad hoc mode are deployed in constrained scenarios, often indoors. In such environments, accuracy is especially relevant, since a few meters of error in the position may cause the node to be identified in another room, floor, or even building. Furthermore, nodes are expected to be very close (e.g., in medical applications), and inaccurate positions could hinder operation and maintenance tasks or even prevent location-based applications from performing their duty. Thus, location algorithms for ad hoc networks must produce positions for settled nodes of the highest possible accuracy.
DV Based Positioning in Ad Hoc Networks
Telecommunication Systems, 2003
Many ad hoc network protocols and applications assume the knowledge of geographic location of nodes. The absolute position of each networked node is an assumed fact by most sensor networks which can then present the sensed information on a geographical map. Finding position without the aid of GPS in each node of an ad hoc network is important in cases where GPS is either not accessible, or not practical to use due to power, form factor or line of sight conditions. Position would also enable routing in sufficiently isotropic large networks, without the use of large routing tables. We are proposing APS -a distributed, hop by hop positioning algorithm, that works as an extension of both distance vector routing and GPS positioning in order to provide approximate position for all nodes in a network where only a limited fraction of nodes have self positioning capability.
Location Discovery using Ad Hoc Networks
2006
This paper presents a generic service which allows a device to discover the location of other devices in an ad hoc network. The service has advantages in a variety of scenarios, since it does not rely on location infrastructures such as GPS satellites or GSM cellular base stations. An outline of the technology that will be needed to realise the service is given, along with a look at the fundamental security issues which surround the use of this location discovery service.
Location based services in wireless ad hoc networks
2013
In this dissertation, we investigate location based services in wireless ad hoc networks from four different aspects-i) location privacy in wireless sensor networks (privacy), ii) end-to-end secure communication in randomly deployed wireless sensor networks (security), iii) quality versus latency trade-off in content retrieval under ad hoc node mobility (performance) and iv) location clustering based Sybil attack detection in vehicular ad hoc networks (trust). The first contribution of this dissertation is in addressing location privacy in wireless sensor networks. We propose a non-cooperative sensor localization algorithm showing how an external entity can stealthily invade into the location privacy of sensors in a network. We then design a location privacy preserving tracking algorithm for defending against such adversarial localization attacks. Next we investigate secure end-to-end communication in randomly deployed wireless sensor networks. Here, due to lack of control on sensors' locations post deployment, prefixing pairwise keys between sensors is not feasible especially under larger scale random deployments. Towards this premise, we propose differentiated key pre-distribution for secure endto-end secure communication, and show how it improves existing routing algorithms. Our next contribution is in addressing quality versus latency trade-off in content retrieval under ad hoc node mobility. We propose a two-tiered architecture for efficient content retrieval in such environment. Finally we investigate Sybil attack detection in vehicular ad hoc networks. A Sybil attacker can create and use multiple counterfeit identities risking trust of a vehicular ad hoc network, and then easily escape the location of the attack avoiding detection. We propose a location based clustering of nodes leveraging vehicle platoon dispersion for detection of Sybil attacks in vehicular ad hoc networks. ACKNOWLEDGMENT Firstly, I want to thank my advisor Dr. Sriram Chellappan for mentoring me during my PhD. He has been a constant source of support and encouragement, often going beyond an extra mile to guide me. The long hours of discussions with him and his thoughtful inputs have been invaluable in defining and improving my research.
Localized positioning in ad hoc networks
Ad Hoc Networks, 2003
Position centric approaches, such as Cartesian routing, geographic routing, and the recently proposed trajectory based forwarding (TBF), address scalability issues in large ad hoc networks by using Euclidean space as a complementary name space. These approaches require that nodes know their position in a common coordinate system. While a GPS receiver in each node would be ideal, in many cases an approximation algorithm is necessary for networks with only a few GPS enabled nodes. These algorithms however require collaboration of large portions of the network, thus imposing an overhead for nodes which do not need positioning, or are mobile. We propose Local Positioning System (LPS), a method that makes use of local node capabilities -angle of arrival, range estimations, compasses and accelerometers, in order to internally position only the groups of nodes involved in particular conversations. Localized positioning enables position centric uses, like discovery, flooding and routing in networks where global positioning is not available.
Position Certainty Propagation: A Location Service for MANETs
Lecture Notes in Computer Science, 2019
Localization in Mobile Ad-hoc Networks (MANETs) and Wireless Sensor Networks (WSNs) is an issue of great interest, especially in applications such as the IoT and VANETs. We propose a solution that overcomes two limiting characteristics of these types of networks. The first is the high cost of nodes with a location sensor (such as GPS) which we will refer to as anchor nodes. The second is the low computational capability of nodes in the network. The proposed algorithm addresses two issues; self-localization where each non-anchor node should discover its own position, and global localization where a node establishes knowledge of the position of all the nodes in the network. We address the problem as a graph where vertices are nodes in the network and edges indicate connectivity between nodes. The weights of edges represent the Euclidean distance between the nodes. Given a graph with at least three anchor nodes and knowing the maximum communication range for each node, we are able to localize nodes using fairly simple computations in a moderately dense graph.