Detecção de Mudanças no Uso das Terras no Município de Pelotas (RS, Brasil), no período de 1985 a 2007, por meio de Processamento Digital de Imagens (original) (raw)

Abstract

The human activity is the main agent of change in different landscapes, such as what occurs in the natural and rural areas. These changes may have different speeds, being perceived in small lapses of time, as days and months, or may be given over several years or centuries. So, the land use/cover change is one of the most important indicator of environmental conservation conditions and its economic status for a region, which has great association with the socioeconomics facts and phenomena, it is reflecting, as well, the public policies for regional or national developing. The purpose of this study was testing some methods of change detection, in Pelotas Municipality (RS, Brazil), from multitemporal orbital data, evaluating some techniques of digital image processing, such as: vegetation index (NDVI, EVI), tasseled cap transformation, principal components analysis and linear spectral mixture model. The orbital data were extracted from three sets of Landsat 5 TM images (WRS 221/82), acquired in 1985, 1995 and 2007, which they were coincided with the summertime, over the agricultural calendar of rice (the main agricultural activity of the municipality). The vegetation indexes were rather insensitive to detect changes among some classes of land use. Meanwhile, the best results were obtained using the linear spectral mixture model. It was also observed, during on the studied period, the urban growth and the decline in agricultural activity by family farming in the upper rural region, while the area occupied by rice plantations of agriculture business in the low lands, remained stable. Palavras-chave: land cover, agriculture, urban growth, rural-urban migration, multitemporal assessment. próximo artigo 3 9

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (15)

  1. BADEJO, M. S. ; CALLEGARO, D. Agregação de valor ao cliente e formação de preço -um estudo da cadeia produtiva de pêssego de Pelotas/RS. Congresso Internacional de Economia e Gestão de Negócios (Networks), 3
  2. Ribeirão Preto, 2001. Anais ... Ribeirão Preto: FEA-USP, 2001. Disponível em: http://www.fearp.usp.br/egna/resumos/Badejo.pdf. Acesso em: 17 nov. 2008. BRASIL. Ministério da Integração Nacional. Programa de Sustentabilidade de Espaços Sub-regionais - PROMESO. Disponível em: <http://www. integracao.gov.br/programas/programasregionais/index.asp?area =spr_promeso>. Acesso em 29.07.2007.
  3. BATESON, A.; CURTISS, B. A method for manual endmember selection and spectral unmixing, Remote Sensing of Environment, v. 55, n. 3, p. 229-243, 1996.
  4. CÂMARA G; SOUZA R. C. M.; FREITAS U. M.; GARRIDO J. SPRING: Integrating remote sensing and GIS by object-oriented data modelling. Computers & Graphics, 20: (3) 395-403, May-Jun 1996.
  5. CHAVEZ JR., P.S. An improved dark-object subtraction technique for atmospheric scattering correction of multiespectral data. Remote Sensing of Environment, v. 24, n. 9, p. 459-479, set. 1988.
  6. COLLARES, L.B.C.; FARIA, E. Gênero e mercado de trabalho em Pelotas: balanço dos últimos anos. Mulher e Trabalho, v. 6, p. 27-39, 2006. ESRI. Arc GIS: the complete Geographic Information System. Disponível em: http://www.esri.com/software/arcgis/index.html. Acesso em: 15 ago. 2007. FEE. Resumo estatístico RS: Municípios : Pelotas .Disponível em: < http://www.fee.tche.br/sitefee/pt/ content/ resumo/pg_municipios_detalhe.php?municipio=Pelotas >. Acesso em 11 mar. 2007.
  7. HUETE, A.R. DIDAN, K., MIURA, T., AND RODRIGUEZ, E. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, v.83, v.1-2, p.195-213, 2002.
  8. HUANG, C.; WYLIE, B.; YANG, L.; HOMER, C.; ZYLSTRA, G. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. International Journal of Remote Sensing, v. 23, n. 8, p. 1741-1748, 2002. IBGE. Pesquisa Nacional por amostra de domicílios 1998 / 2003. Disponível em: http://www.ibge.gov.br/brasil\_em\_sintese/default.htm. Acesso em 26/04/07.
  9. MIURA, A.K. Identificação e quantificação de áreas de formação pioneira de influência fluvial do litoral centro-sul paranaense, por meio de técnicas de sensoriamento remoto. Curitiba, 1999. 118 fls. Dissertação de Mestrado. Universidade Federal do Paraná (UFPR).
  10. NASA. Landsat Program. Landsat TM scene p227r069_7t20010730, Sioux Falls: USGS, 2003. Disponível em: < http://glcf.umiacs.umd.edu/data/landsat/>. Acesso em 15.ago.2007.
  11. NELSON, R. Detecting forest canopy change using Landsat. Greenbelt: Nasa/GSFC, 1982.
  12. ROUSE, J. W.; HAAS, R. H.; SCHELL, J. A.; DEERING, D. W. Monitoring vegetation systems in the Great Plains with ERTS. In: ERTS-1 Symposium, 3., 10-14 December, Washington, DC. Proceedings. Washington, NASA SP-351, p. 309-317, 1973.
  13. RSI. Research Systems Inc. Envi 4.3., Boulder: RSI,.2006. 1 CD-ROM.
  14. SONG, C.; WOODCOCK, C.E.; SETO, K. C., LENNEY M., P., MACOMBER, S., A. Classification and change detection using Landsat TM data: when and how to correct atmospheric effects. Remote Sensing of Environment, v. 75, n. 2. p. 230-244, 2001.
  15. WEISMILLER, R.A.; KRISTOFF, S.J.; SCHOLZ, D.K.; ANUTA, P.E.; MOMIM, S.A. Change detection in coastal zones environments. Photogrameric Engineering and Remote Sensing, v.43, n.12, p. 1533-1539, 1977.