Profiling of accessible chromatin regions across multiple plant species and cell types reveals common gene regulatory principles and new control modules (original) (raw)
Related papers
Plant Methods, 2018
Background: There is a growing interest in the role of chromatin in acquiring and maintaining cell identity. Despite the ever-growing availability of genome-wide gene expression data, understanding how transcription programs are established and regulated to define cell identity remains a puzzle. An important mechanism of gene regulation is the binding of transcription factors (TFs) to specific DNA sequence motifs across the genome. However, these sequences are hindered by the packaging of DNA to chromatin. Thus, the accessibility of these loci for TF binding is highly regulated and determines where and when TFs bind. We present a workflow for measuring chromatin accessibility in Arabidopsis thaliana and define organ-specific regulatory sites and binding motifs of TFs at these sites. Results: We coupled the recently described isolation of nuclei tagged in specific cell types (INTACT) and assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) as a genome-wide strategy to uncover accessible regulatory sites in Arabidopsis based on their accessibility to nuclease digestion. By applying this pipeline in Arabidopsis roots, we revealed 41,419 accessible sites, of which approximately half are found in gene promoters and contain the H3K4me3 active histone mark. The root-unique accessible sites from this group are enriched for root processes. Interestingly, most of the root-unique accessible sites are found in nongenic regions but are correlated with root-specific expression of distant genes. Importantly, these gene-distant sites are enriched for binding motifs of TFs important for root development as well as motifs for TFs that may play a role as novel transcriptional regulators in roots, suggesting that these accessible loci are functional novel gene-distant regulatory elements. Conclusions: By coupling INTACT with ATAC-seq methods, we present a feasible pipeline to profile accessible chromatin in plants. We also introduce a rapid measure of the experiment quality. We find that chromatin accessibility at promoter regions is strongly associated with transcription and active histone marks. However, root-specific chromatin accessibility is primarily found at intergenic regions, suggesting their predominance in defining organ identity possibly via long-range chromatin interactions. This workflow can be rapidly applied to study the regulatory landscape in other cell types, plant species and conditions.
Molecular Plant, 2021
Similar to other complex organisms, plants consist of diverse and specialized cell types. The gain of unique biological functions of these different cell types is the consequence of the establishment of cell-typespecific transcriptional programs. As a necessary step in gaining a deeper understanding of the regulatory mechanisms controlling plant gene expression, we report the use of single-nucleus RNA sequencing (sNucRNA-seq) and single-nucleus assay for transposase accessible chromatin sequencing (sNucATACseq) technologies on Arabidopsis roots. The comparison of our single-nucleus transcriptomes to the published protoplast transcriptomes validated the use of nuclei as biological entities to establish plant cell-type-specific transcriptomes. Furthermore, our sNucRNA-seq results uncovered the transcriptomes of additional cell subtypes not identified by single-cell RNA-seq. Similar to our transcriptomic approach, the sNucATAC-seq approach led to the distribution of the Arabidopsis nuclei into distinct clusters, suggesting the differential accessibility of chromatin between groups of cells according to their identity. To reveal the impact of chromatin accessibility on gene expression, we integrated sNucRNA-seq and sNucATAC-seq data and demonstrated that cell-type-specific marker genes display cell-type-specific patterns of chromatin accessibility. Our data suggest that the differential chromatin accessibility is a critical mechanism to regulate gene activity at the cell-type level.
Distinct modes of DNA accessibility in plant chromatin
Nature Communications, 2012
The accessibility of DNA to regulatory proteins is a major property of the chromatin environment that favours or hinders transcription. Recent studies in flies reported that H3K9me2marked heterochromatin is accessible while H3K27me3-marked chromatin forms extensive domains of low accessibility. Here we show that plants regulate DNA accessibility differently. H3K9me2-marked heterochromatin is the least accessible in the Arabidopsis thaliana genome, and H3K27me3-marked chromatin also has low accessibility. We see that very long genes without H3K9me2 or H3K27me3 are often inaccessible and generated significantly lower amounts of antisense transcripts than other genes, suggesting that reduced accessibility is associated with reduced recognition of alternative promoters. Low accessibility of H3K9me2marked heterochromatin and long genes depend on cytosine methylation, explaining why chromatin accessibility differs between plants and flies. Together, we conclude that restriction of DNA accessibility is a local property of chromatin and not necessarily a consequence of microscopically visible compaction.
The Plant Journal, 2018
Cell differentiation is driven by changes in the activity of transcription factors (TFs) and subsequent alterations in transcription. To study this process, differences in TF binding between cell types can be deduced by probing chromatin accessibility. We used cell type-specific nuclear purification followed by the assay for transposase-accessible chromatin (ATAC-seq) to delineate differences in chromatin accessibility and TF regulatory networks between stem cells of the shoot apical meristem (SAM) and differentiated leaf mesophyll cells in Arabidopsis thaliana. Chromatin accessibility profiles of SAM stem cells and leaf mesophyll cells were very similar at a qualitative level, yet thousands of regions having quantitatively different chromatin accessibility were also identified. Analysis of the genomic regions preferentially accessible in each cell type identified hundreds of overrepresented TF-binding motifs, highlighting sets of TFs that are probably important for each cell type. Within these sets, we found evidence for extensive co-regulation of target genes by multiple TFs that are preferentially expressed in each cell type. Interestingly, the TFs within each of these cell type-enriched sets also showed evidence of extensively co-regulating each other. We further found that preferentially accessible chromatin regions in mesophyll cells tended to also be substantially accessible in the stem cells, whereas the converse was not true. This observation suggests that the generally higher accessibility of regulatory elements in stem cells might contribute to their developmental plasticity. This work demonstrates the utility of cell type-specific chromatin accessibility profiling for the rapid development of testable models of regulatory control differences between cell types.
Integrative epigenomic mapping defines four main chromatin states in Arabidopsis
The EMBO Journal, 2011
Post-translational modification of histones and DNA methylation are important components of chromatinlevel control of genome activity in eukaryotes. However, principles governing the combinatorial association of chromatin marks along the genome remain poorly understood. Here, we have generated epigenomic maps for eight histone modifications (H3K4me2 and 3, H3K27me1 and 2, H3K36me3, H3K56ac, H4K20me1 and H2Bub) in the model plant Arabidopsis and we have combined these maps with others, produced under identical conditions, for H3K9me2, H3K9me3, H3K27me3 and DNA methylation. Integrative analysis indicates that these 12 chromatin marks, which collectively cover B90% of the genome, are present at any given position in a very limited number of combinations. Moreover, we show that the distribution of the 12 marks along the genomic sequence defines four main chromatin states, which preferentially index active genes, repressed genes, silent repeat elements and intergenic regions. Given the compact nature of the Arabidopsis genome, these four indexing states typically translate into short chromatin domains interspersed with each other. This first combinatorial view of the Arabidopsis epigenome points to simple principles of organization as in metazoans and provides a framework for further studies of chromatin-based regulatory mechanisms in plants.
Chromatin and Arabidopsis root development
Seminars in Cell & Developmental Biology, 2008
During development cells transit through different states as they pass from stem cell to terminally differentiated cell. There is evidence that the transition from one state to another can be accompanied by changes in epigenetic state of genes, which is embodied in chromatin state. Here we give an overview of the changes in chromatin that accompany the regulation of expression and review the evidence for the involvement of such changes during epidermal root development and discuss the roles that these changes play in the differentiation of the cell types involved.
2020
Similar to other complex organisms, plants consist of diverse and highly specialized cell types. The gain of unique biological functions of these different cell types is the consequence of the establishment of cell-type-specific transcriptional programs and their associated regulatory mechanisms. Recently, single cell transcriptomic approaches have been applied on Arabidopsis thaliana root protoplasts allowing the accurate characterization of the transcriptional profiles of the cell-types composing seedling roots. As a first step in gaining a deeper understanding of the regulatory mechanisms controlling Arabidopsis gene expression, we report the use of single nucleus RNA sequencing (sNucRNA-seq) and single nucleus Assay for Transposase Accessible Chromatin sequencing (sNucATAC-seq) technologies on Arabidopsis roots. The comparison of our single nuclei transcriptomes to previously published protoplast transcriptomes validated the use of nuclei as biological entities to establish cell...
The Plant Journal, 2004
The packaging of the genomic DNA into chromatin in the cell nucleus requires machineries that facilitate DNAdependent processes such as transcription in the presence of repressive chromatin structures. Using co-immunoprecipitation we have identified in Arabidopsis thaliana cells the FAcilitates Chromatin Transcription (FACT) complex, consisting of the 120-kDa Spt16 and the 71-kDa SSRP1 proteins. Indirect immunofluorecence analyses revealed that both FACT subunits co-localize to nuclei of the majority of cell types in embryos, shoots and roots, whereas FACT is not present in terminally differentiated cells such as mature trichoblasts or cells of the root cap. In the nucleus, Spt16 and SSRP1 are found in the cytologically defined euchromatin of interphase cells independent of the status of DNA replication, but the proteins are not associated with heterochromatic chromocentres and condensed mitotic chromosomes. FACT can be detected by chromatin immunoprecipitation over the entire transcribed region (5¢-UTR, coding sequence, 3¢-UTR) of actively transcribed genes, whereas it does not occur at transcriptionally inactive heterochromatic regions and intergenic regions. FACT localizes to inducible genes only after induction of transcription, and the association of the complex with the genes correlates with the level of transcription. Collectively, these results indicate that FACT assists transcription elongation through plant chromatin.
The Plant Cell, 2014
Chromatin is of major relevance for gene expression, cell division, and differentiation. Here, we determined the landscape of Arabidopsis thaliana chromatin states using 16 features, including DNA sequence, CG methylation, histone variants, and modifications. The combinatorial complexity of chromatin can be reduced to nine states that describe chromatin with high resolution and robustness. Each chromatin state has a strong propensity to associate with a subset of other states defining a discrete number of chromatin motifs. These topographical relationships revealed that an intergenic state, characterized by H3K27me3 and slightly enriched in activation marks, physically separates the canonical Polycomb chromatin and two heterochromatin states from the rest of the euchromatin domains. Genomic elements are distinguished by specific chromatin states: four states span genes from transcriptional start sites (TSS) to termination sites and two contain regulatory regions upstream of TSS. Polycomb regions and the rest of the euchromatin can be connected by two major chromatin paths. Sequential chromatin immunoprecipitation experiments demonstrated the occurrence of H3K27me3 and H3K4me3 in the same chromatin fiber, within a two to three nucleosome size range. Our data provide insight into the Arabidopsis genome topography and the establishment of gene expression patterns, specification of DNA replication origins, and definition of chromatin domains.