Secretory glycoproteins of the rat subcommissural organ are N-linked complex-type glycoproteins. Demonstration by combined use of lectins and specific glycosidases, and by the administration of tunicamycin (original) (raw)

1990, Histochemistry and Cell Biology

Two experimental protocols were used to investigate the secretory glycoproteins of the subcommissural organ (SCO). Protocol I: Lectins, specific exoglycosidases and immunocytochemistry were sequentially applied to the same section or to adjacent semithin sections of the rat SCO fixed in Bouin's fluid and embedded in methacrylate. Lectins used: concanavalin A (con A), wheat germ agglutinin, Limulus polyphemus agglutinin, Ricinus communis agglutinin and Arachis hypogeae agglutinin. Glycosidases used: neuroaminidase, β-galactosidase, α-mannosidase, α-glucosidase and β-N-acetyl-glucosaminidase. For immunocytochemistry an antiserum against bovine Reissner's fiber (AFRU) was used. Lectins and glycosidases were used in sequences that allowed the cleaved sugar residue to be identified as well as that appearing exposed as a terminal residue. This approach led to the following conclusions: (1) the terminal sugar chain of the secreted glycoproteins has the sequence sialic acid-galactose-glucosamine-; (2) the con A-binding material present in the rough endoplasmic reticulum corresponds to mannose; (3) the apical secretory granules and Reissner's fibers displayed a strong con A affinity after removing sialic acid, thus indicating the presence of internal mannosyl residues in the secreted material; (4) after removing most of the sugar moieties the secretory material continued to be strongly immunoreactive with AFRU. Protocol II: Rats were injected into the lateral ventricle with Tunicamycin and killed 12, 24, 50 and 60 h after the injection. The SCO of rats from the last two groups showed a complete absence of con A binding sites. The results from the two experiments confirm that the secretory glycoproteins of the rat SCO are N-linked complex-type glycoproteins with the conformation previously suggested (Rodríguez et al. 1986).

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact