Faculty of 1000 evaluation for An internal ligand-bound, metastable state of a leukocyte integrin, αXβ2 (original) (raw)

Abstract

sparkles

AI

The study presents an evaluation of the internal ligand-bound, metastable state of the leukocyte integrin αXβ2. It highlights the structural dynamics of integrin ectodomains, particularly focusing on the conformational changes in ligand-binding sites. Crystal structures reveal a flexible and high-affinity binding conformation of the αI domain, enabling significant extensional and rotational movements that differ from other integrin types. This work sheds light on the unique allosteric mechanisms in integrins and opens pathways for future research into their functional roles.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (45)

  1. Internal ligand-bound state of a leukocyte integrin • Sen et al. alphaXbeta2. Proc. Natl. Acad. Sci. USA. 107:14727-14732. http://dx.doi .org/10.1073/pnas.1008663107
  2. Chen, X., Y. Yu, L.-Z. Mi, T. Walz, and T.A. Springer. 2012. Molecular basis for complement recognition by integrin X2. Proc. Natl. Acad. Sci. USA. 109:4586-4591. http://dx.doi.org/10.1073/pnas.1202051109
  3. Davis, I.W., A. Leaver-Fay, V.B. Chen, J.N. Block, G.J. Kapral, X. Wang, L.W. Murray, W.B. Arendall III, J. Snoeyink, J.S. Richardson, and D.C. Richardson. 2007. MolProbity: all-atom contacts and structure valida- tion for proteins and nucleic acids. Nucleic Acids Res. 35(Web Server issue):W375-W383. http://dx.doi.org/10.1093/nar/gkm216
  4. Emsley, P., and K. Cowtan. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60:2126-2132. http:// dx.doi.org/10.1107/S0907444904019158
  5. Emsley, J., C.G. Knight, R.W. Farndale, M.J. Barnes, and R.C. Liddington. 2000. Structural basis of collagen recognition by integrin 21. Cell. 101:47-56. http://dx.doi.org/10.1016/S0092-8674(00)80622-4
  6. Gahmberg, C.G., S.C. Fagerholm, S.M. Nurmi, T. Chavakis, S. Marchesan, and M. Grönholm. 2009. Regulation of integrin activity and signalling. Biochim. Biophys. Acta. 1790:431-444. http://dx.doi.org/10.1016/j.bbagen.2009.03 .007
  7. Huth, J.R., E.T. Olejniczak, R. Mendoza, H. Liang, E.A. Harris, M.L. Lupher Jr., A.E. Wilson, S.W. Fesik, and D.E. Staunton. 2000. NMR and mu- tagenesis evidence for an I domain allosteric site that regulates lym- phocyte function-associated antigen 1 ligand binding. Proc. Natl. Acad. Sci. USA. 97:5231-5236. http://dx.doi.org/10.1073/pnas.97.10.5231
  8. Kabsch, W. 2001. Chapter 25.2.9 XDS. In International Tables for Crystallography, Volume F: Crystallography of Biological Macromolecules. M.G. Rossmann and E.V. Arnold, editors. Kluwer Academic Publishers, Dordrecht. 730-734.
  9. Karplus, P.A., and K. Diederichs. 2012. Linking crystallographic model and data quality. Science. 336:1030-1033. http://dx.doi.org/10.1126/science .1218231
  10. Kuhlman, B., G. Dantas, G.C. Ireton, G. Varani, B.L. Stoddard, and D. Baker. 2003. Design of a novel globular protein fold with atomic-level accuracy. Science. 302:1364-1368. http://dx.doi.org/10.1126/science.1089427
  11. Lee, J.-O., L.A. Bankston, M.A. Arnaout, and R.C. Liddington. 1995. Two conformations of the integrin A-domain (I-domain): a pathway for ac- tivation? Structure. 3:1333-1340. http://dx.doi.org/10.1016/S0969-2126 (01)00271-4
  12. Lu, C., M. Ferzly, J. Takagi, and T.A. Springer. 2001. Epitope mapping of antibodies to the C-terminal region of the integrin  2 subunit reveals regions that become exposed upon receptor activation. J. Immunol. 166:5629-5637.
  13. Luo, B.-H., C.V. Carman, and T.A. Springer. 2007. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25:619-647. http://dx.doi .org/10.1146/annurev.immunol.25.022106.141618
  14. McCoy, A.J., R.W. Grosse-Kunstleve, P.D. Adams, M.D. Winn, L.C. Storoni, and R.J. Read. 2007. Phaser crystallographic software. J. Appl. Cryst. 40:658-674. http://dx.doi.org/10.1107/S0021889807021206
  15. Mi, L.Z., M.J. Grey, N. Nishida, T. Walz, C. Lu, and T.A. Springer. 2008. Functional and structural stability of the epidermal growth factor re- ceptor in detergent micelles and phospholipid nanodiscs. Biochemistry. 47:10314-10323. http://dx.doi.org/10.1021/bi801006s
  16. Muller, N., P. Girard, D.L. Hacker, M. Jordan, and F.M. Wurm. 2005. Orbital shaker technology for the cultivation of mammalian cells in suspension. Biotechnol. Bioeng. 89:400-406. http://dx.doi.org/10.1002/bit.20358
  17. Nagae, M., S. Re, E. Mihara, T. Nogi, Y. Sugita, and J. Takagi. 2012. Crystal structure of 51 integrin ectodomain: atomic details of the fibronectin receptor. J. Cell Biol. 197:131-140. http://dx.doi.org/10 .1083/jcb.201111077
  18. Nishida, N., C. Xie, M. Shimaoka, Y. Cheng, T. Walz, and T.A. Springer. 2006. Activation of leukocyte  2 integrins by conversion from bent to ex- tended conformations. Immunity. 25:583-594. http://dx.doi.org/10.1016/ j.immuni.2006.07.016
  19. O'Shea, E.K., K.J. Lumb, and P.S. Kim. 1993. Peptide 'Velcro': design of a heterodimeric coiled coil. Curr. Biol. 3:658-667. http://dx.doi .org/10.1016/0960-9822(93)90063-T
  20. Reeves, P.J., N. Callewaert, R. Contreras, and H.G. Khorana. 2002. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mamma- lian cell line. Proc. Natl. Acad. Sci. USA. 99:13419-13424. http://dx.doi .org/10.1073/pnas.212519299
  21. Salas, A., M. Shimaoka, A.N. Kogan, C. Harwood, U.H. von Andrian, and T.A. Springer. 2004. Rolling adhesion through an extended confor- mation of integrin alphaLbeta2 and relation to  I and  I-like domain interaction. Immunity. 20:393-406. http://dx.doi.org/10.1016/ S1074-7613(04)00082-2 or horizontally on the page. Figures were prepared with PyMol. Detailed comparisons of the closed  2 I domain use a structure of the  L  2 head- piece, which has metal ions at all three sites in the I domain, has better density for the I domain, and is at higher resolution (2.5 Å) than the  X  2 ectodomain (Xie et al., 2010).
  22. Adams, P.D., P.V. Afonine, G. Bunkóczi, V.B. Chen, I.W. Davis, N. Echols, J.J. Headd, L.W. Hung, G.J. Kapral, R.W. Grosse-Kunstleve, et al. 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66:213-221. http://dx.doi.org/10.1107/S0907444909052925
  23. Alonso, J.L., M. Essafi, J.P. Xiong, T. Stehle, and M.A. Arnaout. 2002. Does the integrin alphaA domain act as a ligand for its betaA domain? Curr. Biol. 12:R340-R342. http://dx.doi.org/10.1016/S0960-9822(02)00852-7
  24. Astrof, N.S., A. Salas, M. Shimaoka, J.F. Chen, and T.A. Springer. 2006. Importance of force linkage in mechanochemistry of adhesion receptors. Biochemistry. 45:15020-15028. http://dx.doi.org/10.1021/bi061566o
  25. Bilsland, C.A.G., M.S. Diamond, and T.A. Springer. 1994. The leukocyte in- tegrin p150,95 (CD11c/CD18) as a receptor for iC3b. Activation by a heterologous  subunit and localization of a ligand recognition site to the I domain. J. Immunol. 152:4582-4589.
  26. Chen, X., C. Xie, N. Nishida, Z. Li, T. Walz, and T.A. Springer. 2010. Requirement of open headpiece conformation for activation of leukocyte integrin
  27. Schürpf, T., and T.A. Springer. 2011. Regulation of integrin affinity on cell sur- faces. EMBO J. 30:4712-4727. http://dx.doi.org/10.1038/emboj.2011.333
  28. Shamri, R., V. Grabovsky, J.M. Gauguet, S. Feigelson, E. Manevich, W. Kolanus, M.K. Robinson, D.E. Staunton, U.H. von Andrian, and R. Alon. 2005. Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound che- mokines. Nat. Immunol. 6:497-506. http://dx.doi.org/10.1038/ni1194
  29. Shimaoka, M., J. Takagi, and T.A. Springer. 2002. Conformational regulation of in- tegrin structure and function. Annu. Rev. Biophys. Biomol. Struct. 31:485- 516. http://dx.doi.org/10.1146/annurev.biophys.31.101101.140922
  30. Shimaoka, M., A. Salas, W. Yang, G. Weitz-Schmidt, and T.A. Springer. 2003a. Small molecule integrin antagonists that bind to the 2 subunit I-like domain and activate signals in one direction and block them in the other. Immunity. 19:391-402. http://dx.doi.org/10.1016/S1074- 7613(03)00238-3
  31. Shimaoka, M., T. Xiao, J.-H. Liu, Y. Yang, Y. Dong, C.-D. Jun, A. McCormack, R. Zhang, A. Joachimiak, J. Takagi, et al. 2003b. Structures of the  L I domain and its complex with ICAM-1 reveal a shape-shifting path- way for integrin regulation. Cell. 112:99-111. http://dx.doi.org/10.1016/ S0092-8674(02)01257-6
  32. Springer, T.A., and M.L. Dustin. 2012. Integrin inside-out signaling and the immunological synapse. Curr. Opin. Cell Biol. 24:107-115. http:// dx.doi.org/10.1016/j.ceb.2011.10.004
  33. Springer, T.A., J. Zhu, and T. Xiao. 2008. Structural basis for distinctive rec- ognition of fibrinogen C peptide by the platelet integrin  aIIb  3 . J. Cell Biol. 182:791-800. http://dx.doi.org/10.1083/jcb.200801146
  34. Takagi, J., H.P. Erickson, and T.A. Springer. 2001. C-terminal opening mim- ics 'inside-out' activation of integrin  5  1. Nat. Struct. Biol. 8:412-416. http://dx.doi.org/10.1038/87569
  35. Takagi, J., B.M. Petre, T. Walz, and T.A. Springer. 2002. Global conforma- tional rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell. 110:599-11. http://dx.doi.org/10.1016/ S0092-8674(02)00935-2
  36. Weitz-Schmidt, G., T. Schürpf, and T.A. Springer. 2011. The C-terminal I domain linker as a critical structural element in the conformational ac- tivation of I integrins. J. Biol. Chem. 286:42115-42122. http://dx.doi .org/10.1074/jbc.M111.282830
  37. Whittaker, C.A., and R.O. Hynes. 2002. Distribution and evolution of the von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol. Biol. Cell. 13:3369-3387. http://dx.doi .org/10.1091/mbc.E02-05-0259
  38. Xiao, T., J. Takagi, B.S. Coller, J.H. Wang, and T.A. Springer. 2004. Structural basis for allostery in integrins and binding to fibrinogen-mimetic thera- peutics. Nature. 432:59-67. http://dx.doi.org/10.1038/nature02976
  39. Xie, C., J. Zhu, X. Chen, L. Mi, N. Nishida, and T.A. Springer. 2010. Structure of an integrin with an alphaI domain, complement receptor type 4. EMBO J. 29:666-679. http://dx.doi.org/10.1038/emboj.2009.367
  40. Xiong, J.P., T. Stehle, R. Zhang, A. Joachimiak, M. Frech, S.L. Goodman, and M.A. Arnaout. 2002. Crystal structure of the extracellular segment of in- tegrin V3 in complex with an Arg-Gly-Asp ligand. Science. 296:151- 155. http://dx.doi.org/10.1126/science.1069040
  41. Yang, W., M. Shimaoka, A. Salas, J. Takagi, and T.A. Springer. 2004. Intersubunit signal transmission in integrins by a receptor-like interaction with a pull spring. Proc. Natl. Acad. Sci. USA. 101:2906-2911. http://dx.doi .org/10.1073/pnas.0307340101
  42. Yu, Y., J. Zhu, L.Z. Mi, T. Walz, H. Sun, J.-F. Chen, and T.A. Springer. 2012. Structural specializations of  4  7 , an integrin that mediates roll- ing adhesion. J. Cell Biol. 196:131-146. http://dx.doi.org/10.1083/ jcb.201110023
  43. Zang, Q., and T.A. Springer. 2001. Amino acid residues in the PSI domain and cysteine-rich repeats of the integrin 2 subunit that restrain activation of the integrin (X)(2). J. Biol. Chem. 276:6922-6929. http://dx.doi .org/10.1074/jbc.M005868200
  44. Zhu, J., B.H. Luo, T. Xiao, C. Zhang, N. Nishida, and T.A. Springer. 2008. Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol. Cell. 32:849-861. http://dx.doi.org/10.1016/j.molcel.2008.11.018
  45. Zhu, J., J. Zhu, and T.A. Springer. 2013. Complete integrin headpiece opening in eight steps. J. Cell Biol. 201:1053-1068. http://dx.doi.org/10.1083/ jcb.201212037