A Cone Approach to the Quantum Separability Problem (original) (raw)
2010, Arxiv preprint arXiv: …
Abstract
Exploiting the cone structure of the set of unnormalized mixed quantum states, we offer an approach to detect separability independently of the dimensions of the subsystems. We show that any mixed quantum state can be decomposed as ρ = (1 − λ)C ρ + λE ρ , where C ρ is a separable matrix whose rank equals that of ρ and the rank of E ρ is strictly lower than that of ρ. With the simple choice C ρ = M 1 ⊗ M 2 we have a necessary condition of separability in terms of λ, which is also sufficient if the rank of E ρ equals 1. We give a first extension of this result to detect genuine entanglement in multipartite states and show a natural connection between the multipartite separability problem and the classification of pure states under stochastic local operations and classical communication (SLOCC). We argue that this approach is not exhausted with the first simple choices included herein.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (43)
- E. Schrödinger, Proc. Cambridge Phil. Soc. 31, 555 (1935).
- N. Gisin, Science 326, 1357 (2009).
- X.-B. Wang, T. Hiroshima, A. Tomita, and M. Hayashi, Phys. Rep. 448, 1 (2007).
- M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
- S. Woronowicz, Rep. Math. Phys. 10, 165 (1976).
- A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
- M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 223, 8 (1996).
- P. Horodecki, Phys. Lett. A 232, 333 (1997).
- O. Rudolph, Quantum Inf. Proc. 4, 219 (2005).
- K. Chen and L.-A. Wu, Quantum Inf. Comp. 3, 193 (2003).
- M. Lewenstein, D. Bruss, J. Cirac, B. Kraus, J. Samsonowicz, A. Sanpera, and R. Tarrach, J. Mod. Opt. 47, 2841 (2000).
- M. Plenio and S. Virmani, Quant. Inf. Comp. 7, 1 (2007).
- R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).
- O. Guhne and G. Toth, Phys. Rep. 474, 1 (2009).
- A. Doherty, P. Parrilo, and M. Spedalieri, Phys. Rev. Lett. 88, 187904 (2002).
- A. Doherty, P. Parrilo, and F. Spedalieri, Phys. Rev. A 69, 022308 (2004).
- D. Pérez-García, Phys. Lett. A 330, 149 (2004).
- B. Terhal, Phys. Lett. A 271, 319 (2000).
- M. Lewenstein, B. Kraus, J. Cirac, and P. Horodecki, Phys. Rev. A 62, 052310 (2000).
- D. Bruss, J. Cirac, P. Horodecki, F. Hulpke, B. Kraus, M. Lewenstein, and A. Sanpera, J. Mod. Opt. 49, 1399 (2002).
- L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys. 80, 517 (2008).
- R. Hill and S. Waters, Lin. Alg. Appl. 90, 81 (1987).
- Not necessarily of unit trace.
- M. Lewenstein and A. Sanpera, Phys. Rev. Lett. 80, 2261 (1998).
- S. Karnas and M. Lewenstein, J. Phys. A: Math. Gen. 34, 6919 (2001).
- W. Dür, G. Vidal, and J. Cirac, Phys. Rev. A 62, 062314 (2000).
- L. Lamata, J. León, D. Salgado, and E. Solano, Phys. Rev. A 74, 052336 (2006).
- R. Werner, Phys. Rev. A 40, 4277 (1989).
- G. Barker, Lin. Alg. Appl. 39, 263 (1981).
- When the set of extremals is finite, the cone is said to be polyhedral [29].
- The topology in H N 1 ⊗N 2 is the topology induced by the trace scalar product (Q 1 , Q 2 ) = tr(Q † 1 Q 2 ) = tr(Q 1 Q 2 ).
- O. Guhne and N. Lutkenhaus, J. Phys. C: Conf. Ser. 67, 012004 (2007).
- R. Horn and C. Johnson, Topics in Matrix Analysis (Cambridge University Press, Cambridge, 1991).
- A. Pittenger and M. Rubin, Optics Comm. 179, 447 (2000).
- D.-L. Deng and J.-L. Chen, Ann. Phys. 324, 408 (2008).
- J. Eisert and D. Gross, Multiparticle entanglement, in D. Bruss and G. Leuchs (eds.), Lectures on quantum information, (Wiley-VCH, Weinheim, 2006).
- D. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, Am. J. Phys. 58, 1131 (1990).
- T. Bastin, S. Krins, P. Mathonet, M. Godefroid, L. Lamata, and E. Solano, Phys. Rev. Lett. 103, 070503 (2009).
- C. van Loan, SIAM J. Numer. Anal. 13, 76 (1976).
- Ū † A Ū = I m .
- V † B V = I n .
- R. Churchill and J. Brown, Complex variables and its applications (McGraw Hill, 2008), 8th ed.
- With n 0 = M + 1 for the complex roots of the unit, it is clear that p/n 0 will never be a natural number for any value p ≤ M .