Control of Escherichia coli isocitrate dehydrogenase: an example of protein phosphorylation in a prokaryote (original) (raw)

Control of Isocitrate Dehydrogenase Catalytic Activity by Protein Phosphorylation in Escherichia coli

Microbial Physiology, 2005

During aerobic growth of Escherichia coli on acetate as sole source of carbon and energy, the organism requires the operation of the glyoxylate bypass enzymes, namely isocitrate lyase (ICL) and the anaplerotic enzyme malate synthase (MS). Under these conditions, the glyoxylate bypass enzyme ICL is in direct competition with the Krebs cycle enzyme isocitrate dehydrogenase (ICDH) for their common substrate and although ICDH has a much higher affinity for isocitrate, flux of carbon through ICL is assured by virtue of high intracellular level of isocitrate and the reversible phosphorylation/inactivation of a large fraction of ICDH. Reversible inactivation is due to reversible phosphorylation catalysed by ICDH kinase/phosphatase, which harbours both catalytic activities on the same polypeptide. The catalytic activities of ICDH kinase/phosphatase constitute a moiety conserved cycle, require ATP and exhibit ‘zero-order ultrasensitivity’. The structural gene encoding ICDH kinase/phosphatase...

Control of metabolic interconversion of isocitrate dehydrogenase between the catalytically active and inactive forms inEscherichia coli

FEMS Microbiology Letters, 1998

The enzymic interconversion of Escherichiu coli isocitrate dehydrogenase (ICDH) between the catalytically active and inactive forms is mediated through the activities of ICDH-kinase/phosphatase in response to changes in the metabolic environment. In this study, the use of mutant strains devoid of isocitrate lyase (aceA: : TnlO) and pyruvate dehydrogenase activities revealed that the signal which triggers the reversible inactivation of ICDH in vivo is not directly related to acetate itself, but rather to the need to maintain high intracellular levels of isocitrate and free co-enzyme A. The use of these mutants also revealed, rather unexpectedly, that acetate grown cells contain more ICDH protein than those grown with other carbon sources and that the catalytic activity of ICDH kinase/phosphatase is in excess of cellular demands. Furthermore, this study also revealed the presence of a SO-kDa (f2 kDa) acetate-specific polypeptide, the identity of which has yet to be established.

A comparison of the phosphorylated and unphosphorylated forms of isocitrate dehydrogenase from Escherichia coli ML308

FEBS Letters, 1984

NADP+ can protect active isocitrate dehydrogenase against attack by several proteases. Inactive phosphorylated isocitrate dehydrogenase is much less susceptible to proteolysis than the active enzyme, and it is not protected by NADP+. The results suggest that binding of NADP+ to, or phosphorylation of, active isocitrate dehydrogenase induces similar conformational states. Fluorescence titration experiments show that NADPH can bind to active but not to inactive isocitrate dehydrogenase. It is suggested that the phosphorylation of isocitrate dehydrogenase may occur close to its coenzyme binding site.

Contrasting effects of isocitrate dehydrogenase (ICDH) deletion on fluxes through enzymes of central metabolism in Escherichia coli

FEMS Microbiology Letters, 2019

Flux analysis is central to understanding cellular metabolism and successful manipulation of metabolic fluxes in microbial cell-factories. ICDH deletion conferred contrasting effects on fluxes through substrate-level phosphorylation (SLP) reactions. While significantly increasing flux through pyruvate kinase, it diminishes flux through succinyl CoA synthetase and upregulates phosphotransacetylase (PTA) and acetate kinase (AK). In addition to acetate, the ICDH-less strain excretes pyruvate, citrate, and isocitrate. While efflux to acetate excretion by the Escherichia coli parental strain and its ICDH-less derivative is a reflection of high throughput of glycolytic intermediates, excretion of pyruvate is a reflection of high throughput via pyruvate kinase. On the other hand, citrate and isocitrate excretion is a reflection of truncating the Krebs cycle at the level of ICDH. Furthermore, another striking finding is the inability of the ICDH-less cultures to utilize acetate as a source ...

Partial purification and properties of isocitrate dehydrogenase kinase/phosphatase from Escherichia coli ML308

European journal of biochemistry / FEBS, 1984

Isocitrate dehydrogenase kinase and isocitrate dehydrogenase phosphatase were purified over 1000-fold from Escherichia coli ML308 by procedure involving fractionation with (NH4)2SO4 and chromatography on DEAE-cellulose, blue-dextran-Sepharose and Sephadex G150. The kinase and phosphatase activities copurified, in agreement with the observation [Laporte, D.C. and Koshland, D.E. (1982) Nature (Lond.) 300, 458-460] that a single protein bears both activities. Isocitrate dehydrogenase kinase catalysed the phosphorylation of homogeneous active isocitrate dehydrogenase with a stoichiometry of just under one phosphate group incorporated per subunit. This almost completely inactivated the dehydrogenase. There was a good correlation between phosphorylation and inactivation. Analysis of a partial acid hydrolysate of phosphorylated isocitrate dehydrogenase showed that the only phosphoamino acid present was phosphoserine. Isocitrate dehydrogenase phosphatase catalysed the release of 32P from 32...

Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase

Proceedings of the National Academy of Sciences, 1989

The structure of isocitrate dehydrogenase [threo-DS-isocitrate: NADP+ oxidoreductase (decarboxylating), EC 1.1.1.42] from Escherichia coli has been solved and refined at 2.5 A resolution and is topologically different from that of any other dehydrogenase. This enzyme, a dimer of identical 416-residue subunits, is inactivated by phosphorylation at Ser-113, which lies at the edge of an interdomain pocket that also contains many residues conserved between isocitrate dehydrogenase and isopropylmalate dehydrogenase. Isocitrate dehydrogenase contains an unusual clasp-like domain in which both polypeptide chains in the dimer interlock. Based on the structure of isocitrate dehydrogenase and conservation with isopropylmalate dehydrogenase, we suggest that the active site lies in an interdomain pocket close to the phosphorylation site.

Kinetic model of functioning and regulation of Escherichia coli isocitrate dehydrogenase

Biophysics, 2007

To describe published experimental data on the functioning of E. coli isocitrate dehydrogenase (IDH), a Rapid Equilibrium Random Bi Ter mechanism involving the formation of two dead-end enzyme complexes is proposed and a kinetic model of enzyme functioning is constructed. The enzyme is shown to be regulated through reversible phosphorylation by IDH kinase/phosphatase; the latter, in its turn, is controlled