Correlated expression profile of extracellular matrix-related molecules during the inflammatory response of the teleost fish gilthead seabream (original) (raw)
Related papers
Collagen regulates the activation of professional phagocytes of the teleost fish gilthead seabream
Molecular Immunology, 2009
The innate immune system mediates the initial inflammatory response that follows infection or injury. Although the innate immune response of fish to infection has been relatively well characterized during recent years at both cellular and molecular levels, no studies have examined the role of extracellular matrix (ECM) in the regulation of innate immunity and inflammation. We report here that collagen and gelatin in vitro were able to prime the respiratory burst of phagocytes from the bony fish gilthead seabream. In addition, collagen and gelatin induced a specific set of immune-related and ECM remodelling enzymes that substantially differed from that induced by pathogen-associated molecular patterns. Notably, both collagen and gelatin induced the expression of interleukin-1 , chemokine (C-C motif) ligand 4 and matrix metalopeptidases (MMP) 9 and 13 in acidophilic granulocytes and macrophages but were unable to significantly increase the expression of other pro-inflammatory genes. Furthermore, it was found that the MMP2/MMP9 inhibitor V had a dose-dependent inhibitory effect on seabream phagocyte activation by either collagen or gelatin. In contrast, pre-treatment of collagen and gelatin by collagenase resulted in a higher stimulatory capacity compared to non-digested proteins.
Immunology, 2008
Matrix metalloproteinase 9 (MMP-9) belongs to a family of zinc-dependent endopeptidases. As a consequence of its ability to cleave structural extracellular matrix molecules, mammalian MMP-9 is associated with vital inflammatory processes such as leucocyte migration and tissue remodelling and regeneration. Interestingly, MMP-9 genes have been identified in fish, but functional data are still limited and focus on the involvement of MMP-9 in embryonic development, reproduction and post-mortem tenderization. Here, we describe the involvement of MMP-9 in the innate immunity of carp. In carp, MMP-9 was most notably expressed in classical fish immune organs and in peritoneal and peripheral blood leucocytes, indicating a role of MMP-9 in immune responses. In our well-characterized zymosan-induced peritonitis model for carp, we analysed expression of the MMP-9 gene and the gelatinolytic levels of both pro-and activated forms of MMP-9. The biphasic profile of MMP-9 mRNA expression indicated involvement during the initial phase of inflammation and during the later phase of tissue remodelling. Also, in vitro stimulation of carp phagocytes with lipopolysaccharide or concanavalin A increased MMP-9 gene expression, with a peak at 24 hr. The increase of MMP-9 mRNA correlated with the peak of MMP-9 gelatinolytic level in culture supernatants. These results provide evidence for an evolutionarily conserved and relevant role of MMP-9 in the innate immune response.
Molecular Immunology, 2011
Specific sites and sequences in collagen to which cells can attach, either directly or through protein intermediaries, were identified using Toolkits of 63-amino acid triple-helical peptides and specific shorter GXX GEX motifs, which have different intrinsic affinity for integrins that mediate cell adhesion and migration. We have previously reported that collagen type I (COL-I) was able to prime in vitro the respiratory burst and induce a specific set of immune-and extracellular matrix-related molecules in phagocytes of the teleost fish gilthead seabream (Sparus aurata L.). It was also suggested that COL-I would provide an intermediate signal during the early inflammatory response in gilthead seabream. Since fibroblasts are highly involved in the initiation of wound repair and regeneration processes, in the present study SAF-1 cells (gilthead seabream fibroblasts) were used to identify the binding motifs in collagen by end-point and real-time cell adhesion assays using the collagen peptides and Toolkits. We identified the collagen motifs involved in the early magnesium-dependent adhesion of these cells. Furthermore, we found that peptides containing the GFOGER and GLOGEN motifs (where O is hydroxyproline) present high affinity for SAF-1 adhesion, expressed as both cell number and surface covering, while in cell suspensions, these motifs were also able to induce the expression of the genes encoding the proinflammatory molecules interleukin-1 and cyclooxygenase-2. These data suggest that specific collagen motifs are involved in the regulation of the inflammatory and healing responses of teleost fish.
Developmental & Comparative Immunology, 2010
Matrix metalloproteinase-13 (MMP-13), referred to as collagenase-3, is a proteolytic enzyme that plays a key role in degradation and remodelling of host extracellular matrix proteins. The objective of this study was to characterize the MMP-13 gene in channel catfish, and to determine its pattern of expression in various healthy tissues and during embryogenesis. Since MMP-13 has been shown to have importance in tissue remodelling and some pathological processes, we further studied its involvement in the defense responses of catfish after bacterial infection. The channel catfish MMP-13 cDNA contains an open reading frame of 1416 bp encoding 471 amino acids. Using RT-PCR analysis, MMP-13 was widely expressed in various health tissues. Using quantitative real-time PCR analysis, expression of MMP-13 gene was upregulated by bacterial infection. During normal embryological development, MMP-13 expression was slightly increased in the first day post-fertilization and sharply up-regulated from 1-day postfertilization through hatching.
Matrix metalloproteinases in fish biology and matrix turnover
Matrix biology : journal of the International Society for Matrix Biology, 2015
Matrix metalloproteinases have important functions for tissue turnover in fish, with relevance both for the fish industry and molecular and cellular research on embryology, inflammation and tissue repair. These metalloproteinases have been studied in different fish types, subjected to both aquaculture and experimental conditions. This review highlights studies on these metalloproteinases in relation to both fish quality and health and further, the future importance of fish for basic research studies.
PLoS ONE, 2010
Fibroblasts have shown to be an immune competent cell type in mammals. However, little is known about the immunological functions of this cell-type in lower vertebrates. A rainbow trout hypodermal fibroblast cell-line (RTHDF) was shown to be responsive to PAMPs and DAMPs after stimulation with LPS from E. coli, supernatant and debris from sonicated RTHDF cells. LPS was overall the strongest inducer of IL-1b, IL-8, IL-10, TLR-3 and TLR-9. IL-1b and IL-8 were already highly up regulated after 1 hour of LPS stimulation. Supernatant stimuli significantly increased the expression of IL-1b, TLR-3 and TLR-9, whereas the debris stimuli only increased expression of IL-1b. Consequently, an in vivo experiment was further set up. By mechanically damaging the muscle tissue of rainbow trout, it was shown that fibroblasts in the muscle tissue of rainbow trout contribute to electing a highly local inflammatory response following tissue injury. The damaged muscle tissue showed a strong increase in the expression of the immune genes IL-1b, IL-8 and TGF-b already 4 hours post injury at the site of injury while the expression in non-damaged muscle tissue was not influenced. A weaker, but significant response was also seen for TLR-9 and TLR-22. Rainbow trout fibroblasts were found to be highly immune competent with a significant ability to express cytokines and immune receptors. Thus fish fibroblasts are believed to contribute significantly to local inflammatory reactions in concert with the traditional immune cells.
Distribution of laminin β2, collagen type IV, fibronectin and MMP-9 in ovaries of the teleost fish
Journal of Molecular Histology, 2010
Extracellular matrix in the ovarian follicle has been characterised for several mammalian species but there are no reports that describe the immunolocalisation of the extracellular matrix elements, matrix metalloproteinases, and its relation to plasma 17b estradiol levels and follicular apoptosis during the teleost's reproductive cycle. The present study used immunohistochemistry to characterise the distribution of laminin b2, collagen type IV, fibronectin and matrix metalloproteinases-9 (MMP-9). The TUNEL in situ technique was used to quantify apoptosis and indirect immunofluorimetric to determine plasma 17b estradiol levels. The TUNEL-positive reaction associated with morphological features exhibited follicular apoptosis. During postovulatory follicle involution, the drop in plasma 17b estradiol levels after spawning contributed to the intense apoptosis observed. By immunohistochemical analysis, laminin b2 and collagen type IV were identified as the major constituents of the basement membrane. The loss of integrity of the basement membrane occurred due to lyses of the major constituents, and coincides with increased follicular apoptosis. The integrity of the basement membrane is important for the survival of follicular cells. Furthermore, the MMP-9 results suggest that this enzyme is involved in final oocyte maturation and regression of postovulatory follicles. Fibronectin was observed on the surface of follicular cells of the postovulatory follicle in P. argenteus, this being important for maintaining normal cell adhesion to extracellular matrix. In conclusion, our results suggest that the structure and composition of the extracellular matrix, and plasma 17b estradiol levels related to apoptosis, play an important role during the follicular development and post-spawning involution in teleost fishes.
Chronic inflammatory cells with epithelial cell characteristics in teleost fishes
Veterinary pathology, 1989
Certain cells that participate in the chronic inflammatory response of teleost fishes have many features typical of epithelioid cells of mammals. Such features include high metabolic activity, frequent phagolysosomes, and cytoplasmic interdigitations between adjacent cells; however, the epithelioid granulomas formed in response to certain diseases in teleost fishes also have several features associated with epithelial cells. Cases of ulcerative mycosis or acid-fast bacterial infection in Atlantic menhaden (Brevoortia tyrannus), fungal infection in silver perch (Bairdiella chrysoura), and mycobacteriosis in Mozambique tilapia (Oreochromis mossambicus) had epithelioid cells that were joined together by well-formed desmosomes with tonofilaments. "Mature granulomas" of the ulcerative mycosis-infected menhaden stained positively for cytokeratin, a cytoskeletal protein that is considered to be highly specific for epithelial cells. The consistent presence of these heretofore unre...
Food and Chemical Toxicology, 2014
Occupational skin symptoms are prevalent among the workers of the seafood processing industry. In this study we investigate the role of salmon (Salmo salar) and king crab trypsin (Paralithodes camtschaticus) as inducers of inflammation in skin via secretion of inflammatory mediators. Human skin keratinocytes (HaCaT cells) were exposed to purified salmon and king crab trypsin. We observed that salmon trypsin enhanced the secretion of IL-8 and MMP-2 and crab trypsin enhanced the secretion of IL-8, MMP-2 and MMP-9 in a dose dependent manner. As protease activated receptors (PAR)-2 in skin are known to play an important role in physiology and pathology, we explored the involvement of these receptors in mediating the release of interleukin (IL)-8 and matrix metalloproteinase (MMP)-2 and -9 subsequent to exposure of skin keratinocytes to salmon and crab trypsin. In addition we observed that salmon and crab trypsin exhibit individual differences in stimulating the release of these inflammatory mediators. Finally, using specific small interfering RNA (siRNA) against PAR-2, we confirmed that the increase in secretion of IL-8, MMP-2 and MMP-9 in skin keratinocytes following exposure to salmon and crab trypsin was mediated via activation of PAR-2. These results suggest that exposure to proteases from the seafood may lead to inflammatory reactions in skin.