Human Tear Fluid Protects against Pseudomonas aeruginosa Keratitis in a Murine Experimental Model (original) (raw)

Modification of Pseudomonas aeruginosa Interactions with Corneal Epithelial Cells by Human Tear Fluid

Infection and Immunity, 2003

Both cytotoxic and invasive strains of Pseudomonas aeruginosa can damage corneal epithelial cells in vitro, but neither can infect healthy corneas in vivo. We tested the hypothesis that whole human tear fluid can protect corneal epithelia against P. aeruginosa virulence mechanisms. Cultured corneal epithelial cells were inoculated with 106 CFU of one of 10 strains of P. aeruginosa (five cytotoxic, five invasive)/ml with or without reflex tear fluid collected from the conjunctival sacs of human volunteers. Cytotoxicity was assessed by observation of trypan blue staining and measurement of lactate dehydrogenase release; invasion was quantified by using gentamicin survival assays. Tear fluid retarded growth of only 50% of the P. aeruginosa strains (three of five invasive strains, two of five cytotoxic strains) yet protected corneal cells against invasion by or cytotoxicity of 9 of 10 strains. The only strain resistant to the tear cytoprotective effects was susceptible to tear bacterios...

Human Tear Fluid Reduces Culturability of Contact Lens Associated Pseudomonas aeruginosa Biofilms but Induces Expression of the Virulence Associated Type III Secretion System

The ocular surface, 2016

The type III secretion system (T3SS) is a significant virulence determinant for Pseudomonas aeruginosa. Using a rodent model, we found that contact lens (CL)-related corneal infections were associated with lens surface biofilms. Here, we studied the impact of human tear fluid on CL-associated biofilm growth and T3SS expression. P. aeruginosa biofilms were formed on contact lenses for up to 7 days with or without human tear fluid, then exposed to tear fluid for 5 or 24 h. Biofilms were imaged using confocal microscopy. Bacterial culturability was quantified by viable counts, and T3SS gene expression measured by RT-qPCR. Controls included trypticase soy broth, PBS and planktonic bacteria. With or without tear fluid, biofilms grew to ∼10(8) cfu viable bacteria by 24 h. Exposing biofilms to tear fluid after they had formed without it on lenses reduced bacterial culturability ∼180-fold (p<.001). CL growth increased T3SS gene expression versus planktonic bacteria [5.46 ± 0.24-fold for ...

Why Does the Healthy Cornea Resist Pseudomonas aeruginosa Infection?

American Journal of Ophthalmology, 2013

Purpose-To provide our perspective on why the cornea is resistant to infection based on our research results with Pseudomonas aeruginosa. Perspective-We focus on our current understanding of the interplay between bacteria, tear fluid and the corneal epithelium that determine health as the usual outcome, and propose a theoretical model for how contact lens wear might change those interactions to enable susceptibility to P. aeruginosa infection. Methods-Use of "null-infection" in vivo models, cultured human corneal epithelial cells, contact lens-wearing animal models, and bacterial genetics help to elucidate mechanisms by which P. aeruginosa survive at the ocular surface, adheres, and traverses multilayered corneal epithelia. These models also help elucidate the molecular mechanisms of corneal epithelial innate defense. Results and Discussion-Tear fluid and the corneal epithelium combine to make a formidable defense against P. aeruginosa infection of the cornea. Part of that defense involves the expression of antimicrobials such as β-defensins, the cathelicidin LL-37, cytokeratin-derived antimicrobial peptides, and RNase7. Immunomodulators such as SP-D and ST2 also contribute. Innate defenses of the cornea depend in part on MyD88, a key adaptor protein of TLR and IL-1R signaling, but the basal lamina represents the final barrier to bacterial penetration. Overcoming these defenses involves P. aeruginosa adaptation, expression of the type three secretion system, proteases, and P. aeruginosa biofilm formation on contact lenses. Conclusion-After more than two decades of research focused on understanding how contact lens wear predisposes to P. aeruginosa infection, our working hypothesis places blame for microbial keratitis on bacterial adaptation to ocular surface defenses, combined with changes to the biochemistry of the corneal surface caused by trapping bacteria and tear fluid against the cornea under the lens.

Pseudomonas aeruginosa invades corneal epithelial cells during experimental infection

Infection and immunity, 1994

Pseudomonas aeruginosa is considered an extracellular pathogen. Using assays to determine intracellular survival in the presence of gentamicin, we have demonstrated that some strains of P. aeruginosa are able to invade corneal cells during experimental bacterial keratitis in mice. Although intracellular bacteria were detectable 15 min after inoculation, the number of intracellular bacteria increased in a time-dependent manner over a 24-h period. Levels of invasion were similar when bacteria were grown as a biofilm on solid medium and when they were grown in suspension. Intracellular bacteria survived in vitro for at least 24 h, although only minimal bacterial multiplication within cells was observed. P. aeruginosa PAK and Escherichia coli HB101 did not cause disease in this model and were not isolated from corneas after 24 h even when an inoculum of 10(8) CFU was applied. Transmission electron microscopy of corneal epithelium from eyes infected for 8 h revealed that intracellular ba...

Role of Pseudomonas aeruginosa ExsA in Penetration through Corneal Epithelium in a Novel In Vivo Model

Investigative Ophthalmology & Visual Science, 2003

PURPOSE. The scarified cornea keratitis model was modified to study Pseudomonas aeruginosa infection of healing corneal epithelium. The new model was then used to study the role of ExsA, a transcriptional activator of P. aeruginosa, in bacterial penetration through injured and healing corneal epithelia. METHODS. Scratch-injured corneas of C57BL/6 mice were allowed to heal for 0, 6, 9, or 12 hours before inoculation with a cytotoxic (6206) or invasive (PAO1) P. aeruginosa strain. Disease progression was monitored for 14 days. The integrity of the healing epithelium was studied in uninfected eyes by fluorescein staining and by histologic examination. In other experiments, the effect of bacterial exsA mutation was studied after 0, 6, or 12 hours of healing. Three hours after infection, these eyes were used to quantify early bacterial colonization levels by viable counts, or they were sectioned to study bacterial penetration through the epithelium by microscopy. RESULTS. Corneas remained susceptible to infection 6 but not 12 hours after scratch injury. By 6 hours, the previously exposed stroma was already completely covered by several layers of epithelial cells. Fluorescein staining unexpectedly occurred even after 12 hours of healing time, showing that resistance to infection preceded full restoration of epithelial barrier function. Mutation of exsA reduced both bacterial colonization levels and penetration through the epithelium 3 hours after bacterial inoculation, but only in the 6-hour healing situation, and only for the cytotoxic strain (PA103). Mutation of exsA in the invasive strain (PAO1) had no effect on 3-hour colonization or penetration levels under any circumstances. CONCLUSIONS. The 6-hour healing infection model showed a role for ExsA in early interactions with the corneal epithelium that was not detectable with the conventional (0-hour) scratch model. Comparison of the 6-and 12-hour healing models, which showed that factors additional to barrier function contribute to defense against infection, could be used to gain new insights into corneal defense mechanisms, and the methods used by bacteria to circumvent them.

Role of the Corneal Epithelial Basement Membrane in Ocular Defense against Pseudomonas aeruginosa

Infection and Immunity - INFEC IMMUNITY, 2009

Pseudomonas aeruginosa can invade corneal epithelial cells and translocates multilayered corneal epithelia in vitro, but it does not penetrate the intact corneal epithelium in vivo. In healthy corneas, the epithelium is separated from the underlying stroma by a basement membrane containing extracellular matrix proteins and pores smaller than bacteria. Here we used in vivo and in vitro models to investigate the potential of the basement membrane to defend against P. aeruginosa. Transmission electron microscopy of infected mouse corneas in vivo showed penetration of the stroma by P. aeruginosa only where the basement membrane was visibly disrupted by scratch injury, suggesting that the intact basement membrane prevented penetration. This hypothesis was explored using an in vitro Matrigel Transwell model to mimic the corneal basement membrane.

Pseudomonas aeruginosa survival and multiplication within corneal epithelial cells in vitro

Infection and Immunity

Pseudomonas aeruginosa is usually considered an extracellular pathogen. Using assays to determine intracellular survival in the presence of gentamicin, we have previously demonstrated that P. aeruginosa is able to invade corneal cells during infectious keratitis in mice. In vitro, P. aeruginosa was found to enter the following cells: human corneal cells removed by irrigation; epithelial cells in the cornea of rats, mice, and rabbits; and primary corneal epithelial cells cultured from rat and rabbit eyes. The level of invasion was related to the level of adherent or associated bacteria. In general, invasion was more efficient with cultured epithelial cells than with cells tested in situ. Invasion did not occur when assays were performed at 4؇C. Cytochalasin D but not colchicine inhibited bacterial invasion, suggesting that bacterial entry was an endocytic process dependent on actin microfilaments but not microtubules. Bacteria that invaded cultured corneal epithelial cells were found to multiply within cells. The ability of P. aeruginosa to invade and multiply within corneal epithelial cells may contribute to the virulence of this organism during infectious keratitis, since intracellular bacteria can evade host immune effectors and antibiotics commonly used to treat infection.

Relationship between cytotoxicity and corneal epithelial cell invasion by clinical isolates of Pseudomonas aeruginosa

Infection and immunity

We have reported that some strains of Pseudomonas aeruginosa can enter corneal epithelial cells during experimental murine eye infection and when the cells are cultured in vitro. Following invasion, both the host cell and the intracellular bacteria can remain viable for up to 24 h. Others have reported that toxin-mediated damage of epithelial cells contributes to the pathogenesis of P. aeruginosa keratitis. To clarify the relationship between cell invasion and cytotoxicity, fourteen P. aeruginosa isolates were compared for their capacity to enter epithelial cells and for their ability to induce cytotoxicity. Bacterial invasion was quantified by gentamicin survival assays both in vivo and in vitro. Cytotoxicity was examined qualitatively by trypan blue exclusion assays and quantitatively by chromium release assays in vitro. A significant inverse correlation was found between the ability to induce cytotoxicity and epithelial cell invasion as measured by gentamicin survival assays. Both cytotoxic and noncytotoxic strains were identified among corneal and noncorneal isolates; all isolates that were not cytotoxic were capable of epithelial cell invasion. Efficient host cell invasion could not be demonstrated for cytotoxic strains; however, the gentamicin survival assay relies upon host cells retaining viability in order to yield useful results, and this may limit the effectiveness of this assay for testing epithelial cell invasion by cytotoxic strains. Since all of the corneal isolates that were tested were virulent in vivo, the results show that there are at least two different types of P. aeruginosa-induced disease, one caused by strains that are cytotoxic and the other involving bacteria that can enter epithelial cells and survive intracellularly without killing the host cell.