Evaluation of adhesion properties of lactobacilli probiotic candidates (original) (raw)
Related papers
Lactobacillaceae and cell adhesion: genomic and functional screening
2012
The analysis of collections of lactic acid bacteria (LAB) from traditional fermented plant foods in tropical countries may enable the detection of LAB with interesting properties. Binding capacity is often the main criterion used to investigate the probiotic characteristics of bacteria. In this study, we focused on a collection of 163 Lactobacillaceace comprising 156 bacteria isolated from traditional amylaceous fermented foods and seven strains taken from a collection and used as controls. The collection had a series of analyses to assess binding potential for the selection of new probiotic candidates. The presence/absence of 14 genes involved in binding to the gastrointestinal tract was assessed. This enabled the detection of all the housekeeping genes (ef-Tu, eno, gap, groEl and srtA) in the entire collection, of some of the other genes (apf, cnb, fpbA, mapA, mub) in 86% to 100% of LAB, and of the other genes (cbsA, gtf, msa, slpA) in 0% to 8% of LAB. Most of the bacteria isolated from traditional fermented foods exhibited a genetic profile favorable for their binding to the gastrointestinal tract. We selected 30 strains with different genetic profiles to test their binding ability to non-mucus (HT29) and mucus secreting (HT29-MTX) cell lines as well as their ability to degrade mucus. Assays on both lines revealed high variability in binding properties among the LAB, depending on the cell model used. Finally, we investigated if their binding ability was linked to tighter cross-talk between bacteria and eukaryotic cells by measuring the expression of bacterial genes and of the eukaryotic MUC2 gene. Results showed that wild LAB from tropical amylaceous fermented food had a much higher binding capacity than the two LAB currently known to be probiotics. However their adhesion was not linked to any particular genetic equipment.
Study of the adhesion of Lactobacillus acidophilus strains with probiotic properties to MDCK
Study of the adhesion of Lactobacillus acidophilus strains with probiotic properties to MDCK. Probiotic strains are required to have the ability to adhere to epithelial cells or cell lines. The presence of S-layer proteins in three Lactobacillus acidophilus strains with probiotic properties was examined. Their ability to adhere to the epithelial monolayer model non-cancerous cell line MDCK was studied as well. The strains Lactobacillus acidophilus A2, Lactobacillus acidophilus Ac and Lactobacillus acidophilus Z10 possess S-layer proteins and adhere to the cells of MDCK. Along with their other probiotic properties these make them suitable for inclusion in the composition of probiotics and probiotic foods. INTRODUCTION Probiotics are live microorganisms that have beneficial effects on the health of the host, when administered in adequate amounts [1, 11]. Some strains of the genera Lactobacillus, Bifidobacterium and some representatives of Propionibacterium are currently included in th...
Archives of Microbiology, 2009
Adhesion to intestinal epithelium is an outcome property for the selection of probiotic lactic acid bacteria strains. We have analyzed the adhesion properties of a collection of Lactobacillus casei strains from different origins, ranging from cheese isolates to commercial probiotics. Analysis of the surface characteristics of the strains by measuring adhesion to solvents (MATS test) showed that most of the strains have a basic and hydrophobic surface. The strains were able to bind ex vivo to human colon fragments at different levels and, in most cases, this adhesion correlated with the ability to in vitro binding of mucin. Attachment to this later substrate was not enhanced by growing the cells in the presence of mucin and was independent of proteinaceous factors. On the contrary, adhesion to other extracellular matrix components, such as collagen, fibronectin, or fibrinogen was partially or totally dependent on the presence of surface proteins. These results show that most of L. casei strains have in their surfaces factors that promote binding to intestinal epithelium, however, no clear correlation appears to exist between the origin of the strains and their adhesion capacities.
Prebiotic Treatment Influence the Adhesion Properties of Three Lactobacillus strains
International Journal of Current Microbiology and Applied Sciences, 2017
Different species from the genus Lactobacillus are commonly used as probiotics (Zago et al., 2011). By definition, probiotics are live microorganisms that confer a health benefit on the host when administered in adequate amounts (FAO/WHO, 2001). Their efficacy has been demonstrated for the treatment of gastrointestinal disorders, respiratory infections and allergic symptoms (Wohlgemuth et al., 2010). The general mechanisms of action that induce these beneficial results are: production of antibacterial substances; induction of defensin production by intestinal epithelial cells; competitive exclusion of pathogenic bacteria; influence on host microbiota and pathogenic bacteria; improved intestinal barrier function; modulation of host immune (Wohlgemuth et al., 2010). The predominant number of species applied as probiotics belong to the group of lactic acid bacteria (LAB), named after the main end product of their carbohydrate metabolism. LAB are GramInternational Journal of Current Mic...
The effect of cell surface components on adhesion ability of Lactobacillus rhamnosus
Antonie van Leeuwenhoek, 2014
The aim of this study was to analyze the cell envelope components and surface properties of two phenotypes of Lactobacillus rhamnosus isolated from the human gastrointestinal tract. The ability of the bacteria to adhere to human intestinal cells and to aggregate with other bacteria was determined. L. rhamnosus strains E/N and PEN differed with regard to the presence of exopolysaccharides (EPS) and specific surface proteins. Transmission electron microscopy showed differences in the structure of the outer cell surface of the strains tested. Bacterial surface properties were analyzed by Fourier transform infrared spectroscopy, fatty acid methyl esters and hydrophobicity assays. Aggregation capacity and adhesion of the tested strains to the human colon adenocarcinoma cell line HT29 was determined. The results indicated a high adhesion and aggregation ability of L. rhamnosus PEN, which possessed specific surface proteins, had a unique fatty acid content, and did not synthesize EPS. Adherence of L. rhamnosus was dependent on specific interactions and was promoted by surface proteins (42-114 kDa) and specific fatty acids. Polysaccharides likely hindered bacterial adhesion and aggregation by masking protein receptors. This study provides information on the cell envelope constituents of lactobacilli that influence bacterial aggregation and adhesion to intestinal cells. This knowledge will help to understand better their specific contribution in commensal-host interactions and adaptation to this ecological niche.
Adhesion mechanisms of lactic acid bacteria: conventional and novel approaches for testing
World Journal of Microbiology and Biotechnology, 2019
Adhesion ability is a primary criterion for the selection of probiotic microorganisms. Lactic acid bacteria contribute the majority of microorganisms with probiotic properties. They have several important mechanisms for intestinal epithelial cell adhesion. In order to adhere to the intestinal cells, they generally use various structures such as flagella, pili, S layer proteins, lipoteichoic acid, exopolysaccharides and mucus binding proteins. Various in vitro experiments were designed or study models were developed to reveal the mechanisms they utilize for binding to the intestinal cells, yet, the mechanisms for their adhesion are not fully explained. The major disadvantage of conventional models is the lack of layers forming the intestinal mucosa. Besides, these models omit the presence of natural microbiota, digestive conditions and the presence of a food matrix. Because of the disadvantages of existing models, natural tissues or novel applications like 3D organ cultures, which are better able to mimic in vivo conditions, are preferred.
Anaerobe, 2014
The goal of this study was to identify moonlighting proteins in Lactobacillus helveticus that play an important role in adhesion and aggregation. The label-free method was used for identification and analysis of expression of cellular proteins. The analysis revealed the presence of eight moonlighting proteins in the cell envelope of Lb. helveticus. The tested strains mainly differed with respect to the presence of S-layer proteins and the level of expression of moonlighting proteins in Lb. helveticus strain T159. These surface proteins give the cell a hydrophobic character and play a role in specific interactions with intestinal epithelium cells and with other bacteria. In Lb. helveticus T159, the S-layer associated with moonlighting proteins could act as adherence factors, which was evidenced by the high capability of adhesion, auto-and coaggregation. The hydrophobicity, adhesion and aggregation abilities provide biological activities in food products and they are regarded as an important criterion for probiotic selection.
Applied and environmental microbiology, 1992
The adhesion of Lactobacillus acidophilus BG2FO4, a human stool isolate, to two human enterocytelike cell lines (Caco-2 and HT-29) and to the mucus secreted by a subpopulation of mucus-secreting HT29-MTX cells was investigated. Scanning electron microscopy revealed that the bacteria interacted with the well-defined apical microvilli of Caco-2 cells without cell damage and with the mucus secreted by the subpopulation of HT29-MTX cells. The adhesion to Caco-2 cells did not require calcium and involved an adhesion-promoting factor that was present in the spent supernatant of L. acidophilus cultures. This factor promoted adhesion of poorly adhering human Lactobacillus casei GG but did not promote adhesion of L. casei CNRZ 387, a strain of dairy origin. The adherence components on the bacterial cells and in the spent supernatant were partially characterized. Carbohydrates on the bacterial cell wall appeared to be partly responsible for the interaction between the bacteria and the extrace...
Bioscience, Biotechnology, and Biochemistry, 2014
We previously described potential probiotic Lactobacillus rhamnosus strains, isolated from fermented mare milk produced in Sumbawa Island, Indonesia, which showed high adhesion to porcine colonic mucin (PCM) and extracellular matrix (ECM) proteins. Recently, mucus-binding factor (MBF) was found in the GG strain of L. rhamnosus as a mucin-binding protein. In this study, we assessed the ability of recombinant MBF protein from the FSMM22 strain, one of the isolates of L. rhamnosus from fermented Sumbawa mare milk, to adhere to PCM and ECM proteins by overlay dot blot and Biacore assays. MBF bound to PCM, laminin, collagen IV, and fibronectin with submicromolar dissociation constants. Adhesion of the FSMM22 mbf mutant strain to PCM and ECM proteins was significantly less than that of the wild-type strain. Collectively, these results suggested that MBF contribute to L. rhamnosus host colonization via mucin and ECM protein binding.
International Journal of Food Microbiology, 2010
Twelve lactobacilli previously isolated from newborn infants' gastrointestinal tract and Feta cheese were further characterized by pulse field gel eletrophoresis (PFGE). All strains exhibited distinct PFGE genotypic patterns with the exception of DC421 and DC423 strains possessing identical patterns. The strains DC421, 2035 and 2012 were found to posses certain cell surface traits such as hydrophobicity, autoaggregation and/ or high adhesive capacity suggesting potential immunomodulatory activity. However, application of the dorsal mouse air pouch system revealed that only the DC421, DC429 and 2035 strains exhibited strong immunostimulatory activity such as increased chemotaxis of polymorphonuclear (PMN) cells in association with increased phagocytosis and cytokine production. The same strains also induced immunomodulatory activity in the gut associated lymphoid tissue in mice in the absence of any inflammatory response. All strains induced IgA production while reduced TNFα production by small intestine cells. The strains DC421 and DC429 exerted their effect on the intestine through Toll-like receptor TLR2/TLR4/TLR9 mediated signalling events leading to secretion of a certain profile of cytokines in which gamma interferon (IFN-γ), interleukin (IL)-5, IL-6 and IL-10 are included. The strain 2035 induced similar cytokine profile through the synergy of TLR2/TLR4. This study further supports the eligibility of the air pouch model to discriminate presumptive probiotic Lactobacillus strains exhibiting immunostimulatory activity in the gut. Furthermore, evidence is provided that the cell surface traits examined may not be the only criteria but an alternative and important component of a complex mechanism that enables a microorganism to interact with the host gut to exert its immunoregulatory activity.