The Impact of Overfitting and Overgeneralization on the Classification Accuracy in Data Mining (original) (raw)

Current classification approaches usually do not try to achieve a balance between fitting and generalization when they infer models from training data. Such approaches ignore the possibility of different penalty costs for the false-positive, false-negative, and unclassifiable types. Thus, their performances may not be optimal or may even be coincidental. This dissertation analyzes the above issues in depth. It also proposes two new approaches called the Homogeneity-Based Algorithm (HBA) and the Convexity-Based Algorithm (CBA) to address these issues. These new approaches aim at optimally balancing the data fitting and generalization behaviors of models when some traditional classification approaches are used.