Remodeling of the Human Papillomavirus Type 11 Replication Origin into Discrete Nucleoprotein Particles and Looped Structures by the E2 Protein (original) (raw)

DNA tightens the dimeric DNA-binding domain of human papillomavirus E2 protein without changes in volume

Proceedings of The National Academy of Sciences, 2000

The recognition of palindromic specific DNA sequences by the human papillomavirus (HPV) E2 proteins is responsible for regulation of virus transcription. The dimeric E2 DNA-binding domain of HPV-16 (E2c) dissociates into a partially folded state under high hydrostatic pressure. We show here that pressure-induced monomers of E2c are highly structured, as evidenced by NMR hydrogen-deuterium exchange measurements. On binding to both specific and nonspecific DNA, E2c becomes stable against pressure. Competitive binding studies using fluorescence polarization of fluorescein-labeled DNA demonstrate the reversibility of the specific binding. To assess the thermodynamic parameters for the linkage between protein dissociation and DNA binding, urea denaturation curves were obtained at different pressures in the presence of specific and nonspecific DNA sequences. The change in free energy on denaturation fell linearly with increase in pressure for both protein-DNA complexes, and the measured volume change was similar to that obtained for E2c alone. The data show that the free energy of dissociation increases when E2c binds to a nonspecific DNA sequence but increases even more when the protein binds to the specific DNA sequence. Thus, specific complexes are tighter but do not entail variation in the volume change. The thermodynamic data indicate that DNA-bound E2c dissociates into monomers bound to DNA. The existence of monomeric units of E2c bound to DNA may have implications for the formation of DNA loops, as an additional target for viral and host factors binding to the loosely associated dimer of the N-terminal module of the E2 protein.

Two E2 binding sites (E2BS) alone or one E2BS plus an A/T-rich region are minimal requirements for the replication of the human papillomavirus type 11 origin

Journal of Virology

Human papillomaviruses (HPVs) cannot be propagated in vitro, but the DNA can be replicated transiently in an assay in the presence of two trans-acting viral proteins, El and E2. Using this assay, we have defined the minimal cis-acting elements of the origin of replication of HPV type 11. Most HPV genomes are conserved at the origin of replication, and the core contains three E2 binding sites (E2BS) surrounding an A/T-rich spacer region. The present results show that the minimal requirement for replication is either two E2BS alone or the A/T-rich region plus one E2BS; in the latter case the relative position of the E2BS is important. In all the studies, the presence of both El and E2 proteins was essential for replication, yet only the E2BS was required at the origin. We have shown that El, E2, and the origin of replication containing an E2BS from a complex in vitro, and our data are consistent with a model in which E2 acts to target El to the HPV type 11 replication origin.

Characterization of the Minimal DNA Binding Domain of the Human Papillomavirus E1 Helicase: Fluorescence Anisotropy Studies and Characterization of a Dimerization-Defective Mutant Protein

Journal of Virology, 2003

The E1 helicase of papillomaviruses is required for replication of the viral double-stranded DNA genome, in conjunction with cellular factors. DNA replication is initiated at the viral origin by the assembly of E1 monomers into oligomeric complexes that have unwinding activity. In vivo, this process is catalyzed by the viral E2 protein, which recruits E1 specifically at the origin. For bovine papillomavirus (BPV) E1 a minimal DNA-binding domain (DBD) has been identified N-terminal to the enzymatic domain. In this study, we characterized the DBD of human papillomavirus 11 (HPV11), HPV18, and BPV E1 using a quantitative DNA binding assay based on fluorescence anisotropy. We found that the HPV11 DBD binds DNA with an affinity and sequence requirement comparable to those of the analogous domain of BPV but that the HPV18 DBD has a higher affinity for nonspecific DNA. By comparing the DNA-binding properties of a dimerization-defective protein to those of the wild type, we provide evidence that dimerization of the HPV11 DBD occurs only on two appropriately positioned E1 binding-sites and contributes approximately a 10-fold increase in binding affinity. In contrast, the HPV11 E1 helicase purified as preformed hexamers binds DNA with little sequence specificity, similarly to a dimerization-defective DBD. Finally, we show that the amino acid substitution that prevents dimerization reduces the ability of a longer E1 protein to bind to the origin in vitro and to support transient HPV DNA replication in vivo, but has little effect on its ATPase activity or ability to oligomerize into hexamers. These results are discussed in light of a model of the assembly of replication-competent double hexameric E1 complexes at the origin.

The activation domain of the bovine papillomavirus E2 protein mediates association of DNA-bound dimers to form DNA loops

Proceedings of the National Academy of Sciences, 1991

The E2 transactivator protein of bovine papillomavirus binds its specific DNA target sequence as a dimer. We have found that E2 dimers, preformed in solution independent of DNA, exhibit substantial cooperativity of DNA binding as detected by both nitrocellulose filter retention and footprint analysis techniques. If the binding sites are widely spaced, E2 forms stable DNA loops visible by electron microscopy. When three widely separated binding sites reside on the DNA, E2 condenses the molecule into a bow-tie structure. This implies that each E2 dimer has at least two independent surfaces for multimerization. Two naturally occurring shorter forms of the protein, E2C and E8/E2, which function in vivo as repressors of transcription, do not form such loops. Thus, the looping function of E2 maps to the 161-amino acid activation domain. These results support the looping model of transcription activation by enhancers.

Role of the ATP-binding domain of the human papillomavirus type 11 E1 helicase in E2-dependent binding to the origin

Journal of virology, 1999

Replication of the genome of human papillomaviruses (HPV) is initiated by the recruitment of the viral E1 helicase to the origin of DNA replication by the viral E2 protein, which binds specifically to the origin. We determined, for HPV type 11 (HPV-11), that the C-terminal 296 amino acids of E1 are sufficient for interaction with the transactivation domain of E2 in the yeast two-hybrid system and in vitro. This region of E1 encompasses the ATP-binding domain. Here we have examined the role of this ATP-binding domain, and of ATP, on E2-dependent binding of E1 to the origin. Several amino acid substitutions in the phosphate-binding loop (P loop), which is implicated in binding the triphosphate moiety of ATP, abolished E2 binding, indicating that the structural integrity of this domain is essential for the interaction. The structural constraints imposed on the E1 P loop may differ between HPV-11 and bovine papillomavirus type 1 (BPV-1), since the P479S substitution that inactivates BPV...

DNA structure and flexibility in the sequence-specific binding of papillomavirus E2 proteins

Journal of Molecular Biology, 1998

The papillomavirus E2 proteins are transcriptional regulators that bind to a consensus DNA sequence ACCG NNNN CGGT. Multiple copies of this binding site are found in the viral genomes. The af®nities of the naturally occurring binding sites for the E2 proteins are predominantly dependent upon the sequence of the NNNN spacer. The hierarchies of binding site af®nities among the sites present in the viral genomes result in differential occupancy during the viral life-cycle. In turn, this differential binding regulates transcription from viral promoters, including those for the oncogenes E6 and E7. Structural and biochemical studies have shown that E2 proteins bend the DNA to which they speci®cally bind. Atomic resolution structures of complexes of the bovine papillomavirus strain 1 (BPV-1) E2 protein and DNA show that the protein does not contact the spacer DNA. A direct comparison of the binding of the DNA-binding domains of the E2 proteins from BPV-1 and human papillomavirus strain 16 (HPV-16) to a series of binding sites as a function of the sequence of their central spacer and/or the presence of a nick or gap in one strand of the spacer DNA is presented in this paper. The BPV-1 E2 DNA-binding domain is only moderately sensitive to the nature of the central spacer; less than several fold differences in af®nity were observed when the DNA sequence of the spacer was varied and/or a nick or gap was introduced. In contrast, the HPV-16 E2 DNA-binding domain binds to sites containing A:T-rich central spacers with signi®cantly increased af®nity. The introduction of a nick or gap into the spacer of these high af®nity sequences is very detrimental to HPV-16 E2 binding while comparable nicks or gaps have only small effects in the low af®nity sequences. These results suggest that the HPV-16 E2 protein recognizes the structure of the DNA spacer and that the mechanism of DNA-sequence speci®c binding of the homologous HPV-16 E2 and BPV-1 E2 proteins is signi®cantly different.

Comparison of the Structure and DNA-binding Properties of the E2 Proteins from an Oncogenic and a Non-oncogenic Human Papillomavirus

Journal of Molecular Biology, 2003

Human papillomaviruses (HPVs) that infect the genital tract can be divided into two groups: high-risk HPV types, such as HPV 16 and HPV 18, are associated with cancer, low-risk HPV types, such as HPV 6, are associated with benign warts. In both high-risk and low-risk HPV types, the papillomavirus E2 protein binds to four sites within the viral long control region (LCR) and regulates viral gene expression. Here, we present the crystal structure of the minimal DNA-binding domain (DBD) from the HPV 6 E2 protein. We show that the HPV 6 E2 DBD is structurally more similar to the HPV 18 and bovine papillomavirus type 1 (BPV1) E2 proteins than it is to the HPV 16 E2 protein. Using gel retardation assays, we show that the hierarchy of E2 sites within the HPV 16 and HPV 6 LCRs are different. However, despite these differences in structure and site preference, both the HPV 16 and 6 E2 DBDs recognise an extended version of the consensus E2 binding site derived from studies of the BPV1 E2 protein. In both cases, the preferred binding site is 5 0 AACCGN 4 CGGTT 3 0 ; where the additional flanking base-pairs are in bold and N 4 represents a four base-pair central spacer. Both of these HPV proteins bind preferentially to E2 sites that contain an A:T-rich central spacer. We show that the preference for an A:T-rich central spacer is due, at least in part, to the need to adopt a DNA conformation that facilitates protein contacts with the flanking base-pairs.

The carboxyl-terminal region of the human papillomavirus type 16 E1 protein determines E2 protein specificity during DNA replication

Journal of virology, 1998

The mechanism of DNA replication is conserved among papillomaviruses. The virus-encoded E1 and E2 proteins collaborate to target the origin and recruit host DNA replication proteins. Expression vectors of E1 and E2 proteins support homologous and heterologous papillomaviral origin replication in transiently transfected cells. Viral proteins from different genotypes can also collaborate, albeit with different efficiencies, indicating a certain degree of specificity in E1-E2 interactions. We report that, in the assays of our study, the human papillomavirus type 11 (HPV-11) E1 protein functioned with the HPV-16 E2 protein, whereas the HPV-16 E1 protein exhibited no detectable activity with the HPV-11 E2 protein. Taking advantage of this distinction, we used chimeric E1 proteins to delineate the E1 protein domains responsible for this specificity. Hybrids containing HPV-16 E1 amino-terminal residues up to residue 365 efficiently replicated either viral origin in the presence of either E...

Identification of Domains of the Human Papillomavirus Type 11 E1 Helicase Involved in Oligomerization and Binding to the Viral Origin

Journal of Virology, 2000

The E1 helicase of papillomavirus is required, in addition to host cell DNA replication factors, during the initiation and elongation phases of viral episome replication. During initiation, the viral E2 protein promotes the assembly of enzymatically active multimeric E1 complexes at the viral origin of DNA replication. In this study we used the two-hybrid system and chemical cross-linking to demonstrate that human papillomavirus type 11 (HPV11) E1 can self-associate in yeast and form hexamers in vitro in a reaction stimulated by singlestranded DNA. Self-association in yeast was most readily detected using constructs spanning the E1 C-terminal domain (amino acids 353 to 649) and was dependent on a minimal E1-E1 interaction region located between amino acids 353 and 431. The E1 C-terminal domain was also able to oligomerize in vitro but, in contrast to wild-type E1, did so efficiently in the absence of single-stranded DNA. Sequences located between amino acids 191 and 353 were necessary for single-stranded DNA to modulate oligomerization of E1 and were also required, together with the rest of the C terminus, for binding of E1 to the origin.