Drones to the Rescue! Unmanned Aerial Search Missions Based on Thermal Imaging and Reliable Navigation (original) (raw)

ugust 1994, early morning. Spain's Central Pyrenees Mountains still in darkness. At the outset of an ascent to a 3,000-meter peak along the international border, one of the co-authors encounters a group of tourist hikers who have begun searching for a colleague who had left the camp the previous evening. In the pre-sunrise gloom, helicopters cannot yet operate. A week later, the body of the hiker is found. The rescue efforts came, unfortunately, too late. If you know a bit about GNSS, inertial navigation systems (INS), remote sensing, and maps, and if you have ever seen an unmanned aircraft in flight, you can only come to the same conclusion as we did when we defined, proposed, and won the CLOSE-SEARCH project to develop an unmanned aerial system (UAS) for search and rescue (SAR) applications. That is, if navigation can be performed accurately and reliably-and if elevation databases are accurate, up-to-date, The use of unmanned aerial systems for civilian search-and-rescue operations or disaster management is not new. Predators drones, commonly associated with military operations, were used in the aftermath of the hurricane Katrina in the United States; rotary-wing vehicles equipped with radiation sensors, infrared thermometers and cameras helped out at Japan's post-tsunami Fukushima nuclear facility. These are just a couple examples of the crossapplication potential of such platforms. This article explores the concept, development, and results of a project to develop an unmanned system on board an aircraft. Equipped with a thermal/optical camera and a multi-sensor navigation system benefiting from the European augmentation system EGNOS, the system is designed for a particular application: finding people lost in remote and rugged outdoor environments.