Temperature and salt effects on settling velocity in granular sludge technology (original) (raw)

Abstract

Settling velocity is a crucial parameter in granular sludge technology. In this study the effects of temperature and salt concentrations on settling velocities of granular sludge particles were evaluated. A twofold slower settling velocity for the same granules was observed when the temperature of water decreases from 40 C to 5 C. Settling velocities also decreased with increasing salt concentrations. Experiments showed that when granules were not pre-incubated in a solution with increased salt concentration, they initially floated. The time dependent increase in mass and hence in settling speed of a granule due to salt diffusion into the granule was dependent on the granule diameter. The time needed for full salt equilibrium with the bulk liquid took 1 min for small particles from the top of the sludge bed and up to 30 min for big granules from the bottom of the sludge bed. These results suggest that temperature and salt concentration are important parameters to consider in the design, start-up and operation of granular sludge reactors and monitoring of these parameters will aid in a better control of the sludge management in anaerobic and aerobic granular sludge technology. The observations also give an explanation for previous reports which were suggesting that a start-up of granular sludge reactors is more difficult at low temperatures.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (40)

  1. Bassin, J.P., Winkler, M.-K.H., Kleerebezem, R., Dezotti, M., van Loosdrecht, M.C.M., 2012. Improved phosphate removal by selective sludge discharge in aerobic granular sludge reactors. Biotechnology and Bioengineering 109, 1919e1928.
  2. Batstone, D.J., Keller, J., 2001. Variation of bulk properties of anaerobic granules with wastewater type. Water Research 35, 1723e1729.
  3. Beun, J.J., Hendriks, A., van Loosdrecht, M.C.M., Morgenroth, E., Wilderer, P.A., Heijnen, J.J., 1999. Aerobic granulation in a sequencing batch reactor. Water Research 33, 2283e2290.
  4. Beun, J.J., van Loosdrecht, M.C.M., Heijnen, J.J., 2000. Aerobic granulation. Water Science and Technology 41, 41e48.
  5. Brdjanovic, D., van Loosdrecht, M.C.M., Hooijmans, C.M., Alaerts, G.J., Heijnen, J.J., 1997. Temperature effects on physiology of biological phosphorus removal. Journal of Environmental Engineering 123, 144e153.
  6. Bubeck, R.C., Diment, W.H., Deck, B.L., Baldwin, A.L., Lipton, S.D., 1971. Runoff of deicing salt: effect on Irondequoit Bay, Rochester, New York. Science 172, 1128e1131.
  7. De Bruin, L.M.M., De Kreuk, M.K., van der Roest, H.F.R., van Loosdrecht, M.C.M., Uijterlinde, C., 2004. Aerobic granular sludge technology, alternative for activated sludge technology? Water Science and Technology 49, 1e9.
  8. de Kreuk, M.K., Pronk, M., van Loosdrecht, M.C.M., 2005. Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures. Water Research 39, 4476e4484.
  9. de Los Reyes III, F.L., Raskin, L., 2002. Role of filamentous microorganisms in activated sludge foaming: relationship of mycolata levels to foaming initiation and stability. Water Research 36, 445e459.
  10. Di Felice, R., Nicolella, C., Rovatti, M., 1997. Mixing and segregation in water fluidised-bed bioreactors. Water Research 31, 2392e2396.
  11. Etterer, T., Wilderer, P.A., 2001. Generation and properties of aerobic granular sludge. Water Science and Technology 43, 19e26.
  12. Figueroa, M., Mosquera-Corral, A., Campos, J.L., Me ´ndez, R., 2008. Treatment of saline wastewater in SBR aerobic granular reactors. Water Science and Technology 58, 479e485.
  13. Giancoli, D.C., 1995. Physics. Prentice Hall, New Jersey.
  14. Grant, S., Lin, K.C., 1995. Effects of temperature and organic loading on the performance of upflow anaerobic sludge blanket reactors. Canadian Journal of Civil Engineering 22, 143e149.
  15. Hallermeier, R.J., 1981. Terminal settling velocity of commonly occurring sand grains. Sedimentology 28, 859e865.
  16. Judd, J.H., 1970. Lake stratification caused by runoff from street deicing. Water Research 4, 521e532.
  17. Kettunen, R.H., Rintala, J.A., 1997. The effect of low temperature (5e29 C) and adaptation on the methanogenic activity of biomass. Applied Microbiology and Biotechnology 48, 570e576.
  18. Kwok, W.K., Picioreanu, C., Ong, S.L., van Loosdrecht, M.C.M., Ng, W.J., Heijnen, J.J., 1998. Influence of biomass production and detachment forces on biofilm structures in a biofilm airlift suspension reactor. Biotechnology and Bioengineering 58, 400e407.
  19. Lettinga, G., Hulshoff Pol, L.W., 1991. UASB-process design for various types of wastewaters. Water Science and Technology 24, 87e107.
  20. Lettinga, G., Rebac, S., Zeeman, G., 2001. Challenge of psychrophilic anaerobic wastewater treatment. Trends in Biotechnology 19, 363e370.
  21. Lew, B., Belavski, M., Admon, S., Tarre, S., Green, M., 2003. Temperature effect on UASB reactor operation for domestic wastewater treatment in temperate climate regions. Water Science and Technology 48, 25e30.
  22. Lin, Y., de Kreuk, M., van Loosdrecht, M.C.M., Adin, A., 2010. Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant. Water Research 44, 3355e3364.
  23. Liu, Y., Wang, Z.-W., Liu, Y., Qin, L., Tay, J.-H., 2008. A generalized model for settling velocity of aerobic granular sludge. Biotechnology Progress 21, 621e626.
  24. Moe, S.T., Elgsaeter, A., Skja ˚k-Braek, G., Smidsrød, O., 1993. A new approach for estimating the crosslink density of covalently crosslinked ionic polysaccharide gels. Carbohydrate Polymers 20, 263e268.
  25. Morgenroth, E., Sherden, T., van Loosdrecht, M.C.M., Heijnen, J.J., Wilderer, P.A., 1997. Aerobic granular sludge in a sequencing batch reactor. Water Research 31, 3191e3194.
  26. Mosquera-Corral, A., de Kreuk, M.K., Heijnen, J.J., van Loosdrecht, M.C.M., 2005. Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor. Water 39, 2676e2686.
  27. Nor Anuar, A., Ujang, Z., van Loosdrecht, M.C.M., de Kreuk, M.K., 2007. Settling behaviour of aerobic granular sludge. Water Science and Technology 56, 55e63.
  28. Pajonk, A.S., Saurel, R., Andrieu, J., 2003. Experimental study and modeling of effective NaCl diffusion coefficients values during Emmental cheese brining. Journal of Food Engineering 60, 307e313.
  29. Podolsky, R.D., 1994. Temperature and water viscosity: physiological versus mechanical effects on suspension feeding. Science 265, 100e103.
  30. Rinzema, A., Alphenaar, A., Lettinga, G., 1993. Anaerobic digestion of long-chain fatty acids in UASB and expanded granular sludge bed reactors. Process Biochemistry 28, 527e537.
  31. Ro, K.S., Neethling, J.B., 1994. Biological fluidized-beds containing widely different bioparticles. Journal of Environmental Engineering e ASCE 120, 1416e1426.
  32. Stewart, P.S., 2003. Diffusion in biofilms. Journal of Bacteriology 185, 1485e1491.
  33. Thomas, N., Stevenson, T.N., 1973. An internal wave in a viscous ocean stratified by both salt and heat. Journal of Fluid Mechanics 61, 301e304.
  34. Tierney, S., Sletmoen, M., Skja ˚k-Braek, G., Stokke, B.T., 2010. Interferometric characterization of swelling of covalently crosslinked alginate gel and changes associated with polymer impregnation. Carbohydrate Polymers 80, 828e832.
  35. Uygur, A., Kargi, F., 2004. Salt inhibition on biological nutrient removal from saline wastewater in a sequencing batch reactor. Enzyme and Microbial Technology 34, 313e318.
  36. Viswanath, D.S., Prasad, D.H.L., Dutt, N.K., Rani, K.Y., 2007. Viscosity of Liquids. Springer. ISBN: 10 1-4020-5481-5 (HB).
  37. Weast, R.C., Lide, D.R., 1990. CRC Handbook of Chemistry and Physics. CRC Press, ISBN 0849304709.
  38. Winkler, M.K.H., Bassin, J.P., Kleerebezem, R., de Bruin, L.M.M., van den Brand, T.P.H., van Loosdrecht, M.C.M., 2011a. Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAOeGAO competition at high temperatures. Water Research 45, 3291e3299.
  39. Winkler, M.K.H., Kleerebezem, R., Kuenen, J.G., Yang, J., van Loosdrecht, M.C.M., 2011b. Segregation of biomass in cyclic anaerobic/aerobic granular sludge allows the enrichment of anaerobic ammonium oxidizing bacteria at low temperatures. Environmental Science and Technology 45, 7330e7337.
  40. Xiao, F., Yang, S.F., Li, X.Y., 2008. Physical and hydrodynamic properties of aerobic granules produced in sequencing batch reactors. Separation and Purification Technology 63, 634e641.