A novel Machine Learning-based approach for the detection of SSH botnet infection (original) (raw)

Future Generation Computer Systems, 2021

Abstract

Botnets are causing severe damages to users, companies, and governments through information theft, abuse of online services, DDoS attacks, etc. Although significant research is being made to detect them and mitigate their effect, they are exponentially increasing due to new zero-day attacks, a variation of their behavior, and obfuscation techniques. High Interaction Honeypots (HIH) are the only honeypots able to capture attacks and log all the information generated by attackers when setting up a botnet. The data generated is being processed using Machine Learning (ML) techniques for detection since they can detect hidden patterns. However, so far, research has been focused on intermediate phases of the botnet’s life cycle during operation, underestimating the initial phase of infection. To the best of our knowledge, this is the first solution in the infection phase of SSH-based botnets. Therefore, we have designed an approach based on an SSH-based HIH to generate a dataset consisting of executed commands and network information. Herein, we have applied ML techniques for the development of a real-time detection model. This approach reached a very high level of prediction and zero false negatives. Indeed, our system detected all known and unknown SSH sessions intended to infect our honeypots. Thus, our research has demonstrated that new SSH infections can be detected through ML techniques.

Antonio Ruiz-Martínez hasn't uploaded this document.

Let Antonio know you want this document to be uploaded.

Ask for this document to be uploaded.