Low Pathogenic Influenza A Viruses in North American Diving Ducks Contribute to the Emergence of a Novel Highly Pathogenic Influenza A(H7N8) Virus (original) (raw)
Related papers
Journal of virology, 2018
Wild bird-origin influenza A viruses (IAVs or avian influenza) have led to sporadic outbreaks among domestic poultry in the United States (US) and Canada, resulting in economic losses through the implementation of costly containment practices and destruction of birds. We used evolutionary analyses of virus sequence data to determine that 78 H5 low pathogenic avian influenza viruses (LPAIVs) isolated from domestic poultry in the US and Canada during 2001-2017 resulted from 18 independent virus introductions from wild birds. Within the wild bird reservoir, the hemagglutinin gene segments of H5 LPAIVs exist primarily as two co-circulating genetic sublineages, and our findings suggest the H5 gene segments flow within each migratory bird flyway and among adjacent flyways, with limited exchange between the non-adjacent Atlantic and Pacific Flyways. Phylogeographic analyses provided evidence that IAVs from dabbling ducks and swans/geese contributed to emergence of viruses among domestic po...
1999
The presence of low-pathogenic H7 avian influenza virus (AIV), which is associated with live-bird markets (LBM) in the Northeast United States, was first detected in 1994 and, despite efforts to eradicate the virus, surveillance of these markets has resulted in numerous isolations of H7 AIVs from several states from 1994 through 1998. The hemagglutinin, nonstructural, and matrix genes from representative H7 isolates from the LBM and elsewhere were sequenced, and the sequences were compared phylogenetically. The hemagglutinin gene of most LBM isolates examined appeared to have been the result of a single introduction of the hemagglutinin gene. Evidence for evolutionary changes were observed with three definable steps. The first isolate from 1994 had the amino acid threonine at the ؊2 position of the hemagglutinin cleavage site, which is the most commonly observed amino acid at this site for North American H7 AIVs. In January 1995 a new genotype with a proline at the ؊2 position was detected, and this genotype eventually became the predominant virus isolate. A third viral genotype, detected in November 1996, had an eight-amino-acid deletion within the putative receptor binding site. This viral genotype appeared to be the predominant isolate, although isolates with proline at the ؊2 position without the deletion were still observed in viruses from the last sampling date. Evidence for reassortment of multiple viral genes was evident. The combination of possible adaptive evolution of the virus and reassortment with different influenza virus genes makes it difficult to determine the risk of pathogenesis of this group of H7 AIVs.
H7N9 influenza A virus in turkeys in Minnesota
The Journal of general virology, 2015
Introductions of H7 influenza A virus (IAV) from wild birds into poultry have been documented worldwide, resulting in varying degrees of morbidity and mortality. H7 IAV infection in domestic poultry has served as a source of human infection and disease. We report the detection of H7N9 subtype IAVs in Minnesota (MN) turkey farms during 2009 and 2011. The full genome was sequenced from eight isolates as well as the haemagglutinin (HA) and neuraminidase (NA) gene segments of H7 and N9 virus subtypes for 108 isolates from North American wild birds between 1986 and 2012. Through maximum-likelihood and coalescent phylogenetic analyses, we identified the recent H7 and N9 IAV ancestors of the turkey-origin H7N9 IAVs, estimated the time and geographical origin of the ancestral viruses, and determined the relatedness between the 2009 and 2011 turkey-origin H7N9 IAVs. Analyses supported that the 2009 and 2011 viruses were distantly related genetically, suggesting that the two outbreaks arose f...
Infection, Genetics and Evolution, 2020
Congregation of different migratory and resident bird species on aquatic ecosystems during winter migration increases contact rates and enhances influenza A virus (IAV) transmission. However, scarce research has been focused on the resident bird's contribution to the viral ecology at a local scale. The Mexican duck (Anas diazi) is an endemic endangered anatid from Mexico. This resident species shares aquatic habitats with migratory birds in the wetlands of Central Mexico. Therefore, here we describe the phylogenetic analysis of an IAV (A/Mexican duck/EstadodeMexico; Lerma/UIFMVZ377/2016(H5N2)) isolated in this species, during spatiotemporal concurrence with migratory anatids in the winter season. All eight gene sequences were obtained by nextgeneration sequencing. Maximum Likelihood trees were constructed using MEGA-X, with General Time Reversible + Invariant (GTR+I), Subtree Pruning and Regrafting (SPR) heuristic method, and 1000 bootstrap replicates. Similarities with six different IAV subtypes were observed through a BLAST search: H6N5, H7N7, H5N2, H4N6, H9N2, and H11N9, detected in wild ducks during 2015 in the Pacific, Central and Mississippi flyways stop sites across the United States of America and Canada. The molecular identification of this reassortant H5N2 IAV highlights the importance of resident species as a reservoir host and its potential participation in the maintenance and transmission of IAV in wetlands surrounded by rural areas.
The Evolutionary Genetics and Emergence of Avian Influenza Viruses in Wild Birds
PLoS Pathogens, 2008
We surveyed the genetic diversity among avian influenza virus (AIV) in wild birds, comprising 167 complete viral genomes from 14 bird species sampled in four locations across the United States. These isolates represented 29 type A influenza virus hemagglutinin (HA) and neuraminidase (NA) subtype combinations, with up to 26% of isolates showing evidence of mixed subtype infection. Through a phylogenetic analysis of the largest data set of AIV genomes compiled to date, we were able to document a remarkably high rate of genome reassortment, with no clear pattern of gene segment association and occasional inter-hemisphere gene segment migration and reassortment. From this, we propose that AIV in wild birds forms transient ''genome constellations,'' continually reshuffled by reassortment, in contrast to the spread of a limited number of stable genome constellations that characterizes the evolution of mammalian-adapted influenza A viruses.
Journal of Virology, 2003
The hemagglutinin (HA) and neuraminidase (NA) genes of H7 avian influenza virus (AIV) isolated between 1994 and 2002 from live-bird markets (LBMs) in the northeastern United States and from three outbreaks in commercial poultry have been characterized. Phylogenetic analysis of the HA and NA genes demonstrates that the isolates from commercial poultry were closely related to the viruses circulating in the LBMs. Also, since 1994, two distinguishing genetic features have appeared in this AIV lineage: a deletion of 17 amino acids in the NA protein stalk region and a deletion of 8 amino acids in the HA1 protein which is putatively in part of the receptor binding site. Furthermore, analysis of the HA cleavage site amino acid sequence, a marker for pathogenicity in chickens and turkeys, shows a progression toward a cleavage site sequence that fulfills the molecular criteria for highly pathogenic AIV.
Viruses
Low-pathogenicity avian influenza viruses (LPAIV) introduced by migratory birds circulate in wild birds and can be transmitted to poultry. These viruses can mutate to become highly pathogenic avian influenza viruses causing severe disease and death in poultry. In March 2019, an H7N3 avian influenza virus—A/Spot-billed duck/South Korea/WKU2019-1/2019 (H7N3)—was isolated from spot-billed ducks in South Korea. This study aimed to evaluate the phylogenetic and mutational analysis of this isolate. Molecular analysis revealed that the genes for HA (hemagglutinin) and NA (neuraminidase) of this strain belonged to the Central Asian lineage, whereas genes for other internal proteins such as polymerase basic protein 1 (PB1), PB2, nucleoprotein, polymerase acidic protein, matrix protein, and non-structural protein belonged to that of the Korean lineage. In addition, a monobasic amino acid (PQIEPR/GLF) at the HA cleavage site, and the non-deletion of the stalk region in the NA gene indicated th...
A new piece in the puzzle of the novel avian-origin influenza A (H7N9) virus
Biology Direct, 2013
Using phylogenetic analysis on newly available sequences, we characterize A/chicken/Jiangsu/RD5/2013(H10N9) as currently closest precursor strain for the NA segment in the novel avian-origin H7N9 virus responsible for an outbreak in China. We also show that the internal segments of this precursor strain are closely related to those of the presumed precursor for the HA segment, A/duck/Zhejiang/12/2011(H7N3), which indicates that the sources of both HA and NA donors for the reassortant virus are of regional and not migratory-bird origin and highlights the role of chicken already in the early reassortment events.