Effect of Standing or Walking at a Workstation on Cognitive Function: A Randomized Counterbalanced Trial (original) (raw)
Related papers
BMC public health, 2016
Prolonged sitting is ubiquitous in modern society and linked to several diseases. Height-adjustable desks are being used to decrease worksite based sitting time (ST). Single-desk sit-to-stand workplaces exhibit small ST reduction potential and short-term loss in performance. The aim of this paper is to report the study design and methodology of an ACTIVE OFFICE trial. The study was a 1-year three-arm, randomized controlled trial in 18 healthy Austrian office workers. Allocation was done via a regional health insurance, with data collection during Jan 2014 - March 2015. Participants were allocated to either an intervention or control group. Intervention group subjects were provided with traditional or two-desk sit-to-stand workstations in either the first or the second half of the study, while control subjects did not experience any changes during the whole study duration. Sitting time and physical activity (IPAQ-long), cognitive performance (text editing task, Stroop-test, d2R test ...
Work, 2020
BACKGROUND: Sedentary behavior has been recognized as an important risk factor in the development of several chronic diseases. Active workstations have been proposed as an effective countermeasure. While such interventions likely reduce sedentary time, concerns regarding the effects on work performance and cognitive function remain. OBJECTIVE: To use meta-analyis to critically evaluate the work performance and cognitive function effects of cycle and treadmill desks as workplace interventions against sedentary behavior. METHODS: In February 2018, a data search was conducted. Parallel and crossover design studies evaluating workplace interventions compared to conventional seated conditions were included. RESULTS: Eighteen studies met the inclusion criteria. Both interventions reduced typing speed (cycling: SMD =-0.35, p = 0.04; treadmill: SMD =-0.8, p < 0.001). The number of typing errors significantly increased during cycling interventions (SMD = 0.39, p = 0.004). No effect was found for the selective attention tests. However, there was an improvement in recall ability (SMD = 0.68, p = 0.003). CONCLUSION: Cycle and treadmill desks affect work performance, but most likely not due to a decrease in cognitive function. Further research is needed to determine whether the degree of work performance decline is acceptable, considering the many positive effects of implementing active workstations in the office environment.
International Journal of Environmental Research and Public Health, 2014
Objective: This study was conducted to determine whether installation of sit-stand desks (SSDs) could lead to decreased sitting time during the workday among sedentary office workers. Methods: A randomized cross-over trial was conducted from January to April, 2012 at a business in Minneapolis. 28 (nine men, 26 full-time) sedentary office workers took part in a 4 week intervention period which included the use of SSDs to gradually replace 50% of sitting time with standing during the workday. Physical activity was the primary outcome. Mood, energy level, fatigue, appetite, dietary intake, and productivity were explored as secondary outcomes. Results: The intervention reduced sitting time at work by 21% (95% CI 18%-25%) and sedentary time by 4.8 min/work-hr (95% CI 4.1-5.4 min/work-hr). For a 40 h work-week, this translates into replacement of 8 h of sitting time with standing and sedentary time being reduced by 3.2 h. Activity level during non-work hours did not change. The intervention also increased overall sense of well-being, energy, decreased fatigue, had no impact on productivity, and reduced OPEN ACCESS Int. J. Environ. Res. Public Health 2014, 11 6654 appetite and dietary intake. The workstations were popular with the participants. Conclusion: The SSD intervention was successful in increasing work-time activity level, without changing activity level during non-work hours.
Effect of alternating postures on cognitive performance for healthy people performing sedentary work
Ergonomics, 2017
Prolonged sitting is a risk factor for several diseases and the prevalence of worksite-based interventions such as sit-to-stand workstations is increasing. Although their impact on sedentary behaviour has been regularly investigated, the effect of working in alternating body postures on cognitive performance is unclear. To address this uncertainty, 45 students participated in a two-arm, randomised controlled cross-over trial under laboratory conditions. Subjects executed validated cognitive tests (working speed, reaction time, concentration performance) either in sitting or alternating working postures on two separate days (ClinicalTrials.gov Identifier: NCT02863731). MANOVA results showed no significant difference in cognitive performance between trials executed in alternating, standing or sitting postures. Perceived workload did not differ between sitting and alternating days. Repeated measures ANOVA revealed significant learning effects regarding concentration performance and wor...
International Journal of Environmental Research and Public Health
Office workers are exposed to high levels of sedentary time. In addition to cardio-vascular and metabolic health risks, this sedentary time may have musculoskeletal and/or cognitive impacts on office workers. Participants (n = 20) undertook two hours of laboratory-based sitting computer work to investigate changes in discomfort and cognitive function (sustained attention and problem solving), along with muscle fatigue, movement and mental state. Over time, discomfort increased in all body areas (total body IRR [95% confidence interval]: 1.43 [1.33–1.53]) reaching clinically meaningful levels in the low back and hip/thigh/buttock areas. Creative problem solving errors increased (β = 0.25 [0.03–1.47]) while sustained attention did not change. There was no change in erector spinae, trapezius, rectus femoris, biceps femoris and external oblique median frequency or amplitude; low back angle changed towards less lordosis, pelvis movement increased, and mental state deteriorated. There wer...
Trials, 2023
Background Sedentary behavior (SB) has been linked to several negative health outcomes. Therefore, reducing SB or breaking up prolonged periods of SB improves functional fitness, food consumption, job satisfaction, and productivity. Reducing SB can be achieved by introducing a health-enhancing contextual modification promoted by a sit-stand desk in the workplace. The primary goal will be to test the effectiveness of this intervention in reducing and breaking up SB, while improving health outcomes in office-based workers during a 6-month intervention. Methods A two-arm (1:1), superiority parallel-group cluster RCT will be conducted to evaluate the effectiveness of this intervention in a sample of office-based workers from a university in Portugal. The intervention will consist of a psychoeducation session, motivational prompts, and contextual modification promoted by a sit-stand desk in the workplace for 6 months. The control group will work as usual in their workplace, with no contextual change or prompts during the 6-month intervention. Three assessment points will be conducted in both groups, pre-intervention (baseline), post-intervention, and a 3-month follow-up. The primary outcomes include sedentary and physical activity-related variables, which will be objectively assessed with 24 h monitoring using the ActivPAL for 7 days. The secondary outcomes include (a) biometric indices as body composition, body mass index, waist circumference, and postural inequalities; and (b) psychosocial variables such as overall and work-related fatigue, overall discomfort, life/ work satisfaction, quality of life, and eating behavior. Both the primary and secondary outcomes will be assessed at each assessment point. Discussion This study will lean on the use of a sit-stand workstation for 6 months, prompted by an initial psychoeducational session and ongoing motivational prompts. We will aim to contribute to this topic by providing robust data on alternating sitting and standing postures in the workplace.
Long-term effects of sit-stand workstations on workplace sitting: A natural experiment
Journal of science and medicine in sport, 2017
Sit-stand workstations may result in significant reductions in workplace sitting. However, few studies have examined long-term maintenance under real-world conditions. The purpose of this study was to evaluate workplace sitting time, cardio-metabolic biomarkers, and work productivity during a workplace re-design which included the installation of sit-stand workstations. Natural experiment with appropriately matched comparison. Office workers from distinct worksites in the same unit were recruited (Intervention, n=24; Comparison, n=12). Intervention arm participants received a sit-stand workstation and 4 months of sitting-specific motivational support. The comparison arm received 4 months of ergonomic focused motivational support. Time spent in sitting, standing, and other physical activity were measured by activPAL3c for a week. Cardio-metabolic biomarkers and work productivity were also measured. Assessments occurred at baseline, 4 months, and 18 months. At 4 months, work sitting t...
2014
Abstract: Objective: This study was conducted to determine whether installation of sit-stand desks (SSDs) could lead to decreased sitting time during the workday among sedentary office workers. Methods: A randomized cross-over trial was conducted from January to April, 2012 at a business in Minneapolis. 28 (nine men, 26 full-time) sedentary office workers took part in a 4 week intervention period which included the use of SSDs to gradually replace 50 % of sitting time with standing during the workday. Physical activity was the primary outcome. Mood, energy level, fatigue, appetite, dietary intake, and productivity were explored as secondary outcomes. Results: The intervention reduced sitting time at work by 21 % (95 % CI 18%–25%) and sedentary time by 4.8 min/work-hr (95 % CI 4.1–5.4 min/work-hr). For a 40 h work-week, this translates into replacement of 8 h of sitting time with standing and sedentary time being reduced by 3.2 h. Activity level during non-work hours did not change. ...