Host and viral features of human dengue cases shape the population of infected and infectious Aedes aegypti mosquitoes (original) (raw)

Differential Susceptibility of Two Field Aedes aegypti Populations to a Low Infectious Dose of Dengue Virus

PLoS ONE, 2014

Background: The infectious dose required to infect mosquito vectors when they take a blood meal from a viremic person is a critical parameter underlying the probability of dengue virus (DENV) transmission. Because experimental vector competence studies typically examine the proportion of mosquitoes that become infected at intermediate or high DENV infectious doses in the blood meal, the minimum blood meal titer required to infect mosquitoes is poorly documented. Understanding the factors influencing the lower infectiousness threshold is epidemiologically significant because it determines the transmission potential of humans with a low DENV viremia, possibly including inapparent infections, and during the onset and resolution of the viremic period of acutely infected individuals.

Aedes aegypti density and the risk of dengue-virus transmission

Ecological aspects for …, 2003

Using genetically modified mosquitoes to control vector-borne diseases will require specific, quantitative targets for the extent to which populations of competent mosquito vectors need to be reduced in order to produce predictable public-health outcomes. Unfortunately, dengue researchers do not have an entomological measure for predicting the risk of human dengue infection and disease that is as effective as they would like. The situation is further complicated by the fact that contemporary dengue control is based on the assumption, which has not been thoroughly tested, that a reduction in adult Aedes aegypti population densities will decrease risk of virus transmission. Ae. aegypti eradication is not considered feasible and there are no commercially available dengue vaccines or clinical cures. Herein we discuss four interrelated questions that need to be addressed for the proper evaluation and implementation of genetically modified mosquitoes for dengue control. In specific terms, what is an acceptable level of dengue risk? What are the mosquito densities necessary to achieve that goal? What is the best way to measure entomological risk? Because most dengue risk factors are likely to exhibit spatial dependence, at what geographic scale are the components of dengue transmission important? We conclude with two recommendations for improving dengue surveillance and control. First, there is an urgent need for field-based prospective longitudinal cohort studies on the relationships among measures of Ae. aegypti density, dengue incidence, and severity of disease. Second, new rapid, inexpensive, and operationally amenable methodologies are needed to evaluate and monitor the impact of vector-control strategies on disease reduction. Unless competent mosquito vectors are eliminated entirely, predicting and evaluating success following release of genetically modified Ae. aegypti will require a more thorough understanding of the relationship between vector density and the risk of human disease.

Vector competence of Aedes aegypti populations from Senegal for sylvatic and epidemic dengue 2 virus isolated in West Africa

Transactions of the Royal Society of Tropical Medicine and Hygiene, 2008

Background: Dengue is an arboviral disease caused by dengue virus (DENV), whose main vectors are the mosquitoes Aedes aegypti and Aedes albopictus. A. aegypti is the only DENV vector in Cape Verde, an African country that suffered its first outbreak of dengue in 2009. However, little is known about the variation in the level of vector competence of this mosquito population to the different DENV serotypes. This study aimed to evaluate the vector competence of A. aegypti from the island of Santiago, Cape Verde, to four DENV serotypes and to detect DENV vertical transmission. Methods: Mosquitoes were fed on blood containing DENV serotypes and were dissected at 7, 14 and 21 days post-infection (dpi) to detect the virus in the midgut, head and salivary glands (SG) using RT-PCR. Additionally, the number of copies of viral RNA present in the SG was determined by qRT-PCR. Furthermore, eggs were collected in the field and adult mosquitoes obtained were analyzed by RT-PCR and the platelia dengue NS1 antigen kit to detect transovarial transmission. Results: High rates of SG infection were observed for DENV-2 and DENV-3 whereas for DENV-1, viral RNA was only detected in the midgut and head. DENV-4 did not spread to the head or SG, maintaining the infection only in the midgut. The number of viral RNA copies in the SG did not vary significantly between DENV-2 and DENV-3 or among the different periods of incubation and the various titers of DENV tested. With respect to DENV surveillance in mosquitoes obtained from the eggs collected in the field, no samples were positive. Conclusion: Although no DENV positive samples were collected from the field in 2014, it is important to highlight that the A. aegypti population from Santiago Islands exhibited different degrees of susceptibility to DENV serotypes. This population showed a high vector competence for DENV-2 and DENV-3 strains and a low susceptibility to DENV-1 and DENV-4. Viral RNA copies in the SG remained constant for at least 21 dpi, which may enhance the vector capacity of A. aegypti and suggests the presence of a mechanism modulating virus replication in the SG.

Vector competence of the Aedes aegypti population from Santiago Island, Cape Verde, to different serotypes of dengue virus

Parasites & Vectors, 2015

Background: Dengue is an arboviral disease caused by dengue virus (DENV), whose main vectors are the mosquitoes Aedes aegypti and Aedes albopictus. A. aegypti is the only DENV vector in Cape Verde, an African country that suffered its first outbreak of dengue in 2009. However, little is known about the variation in the level of vector competence of this mosquito population to the different DENV serotypes. This study aimed to evaluate the vector competence of A. aegypti from the island of Santiago, Cape Verde, to four DENV serotypes and to detect DENV vertical transmission. Methods: Mosquitoes were fed on blood containing DENV serotypes and were dissected at 7, 14 and 21 days post-infection (dpi) to detect the virus in the midgut, head and salivary glands (SG) using RT-PCR. Additionally, the number of copies of viral RNA present in the SG was determined by qRT-PCR. Furthermore, eggs were collected in the field and adult mosquitoes obtained were analyzed by RT-PCR and the platelia dengue NS1 antigen kit to detect transovarial transmission. Results: High rates of SG infection were observed for DENV-2 and DENV-3 whereas for DENV-1, viral RNA was only detected in the midgut and head. DENV-4 did not spread to the head or SG, maintaining the infection only in the midgut. The number of viral RNA copies in the SG did not vary significantly between DENV-2 and DENV-3 or among the different periods of incubation and the various titers of DENV tested. With respect to DENV surveillance in mosquitoes obtained from the eggs collected in the field, no samples were positive. Conclusion: Although no DENV positive samples were collected from the field in 2014, it is important to highlight that the A. aegypti population from Santiago Islands exhibited different degrees of susceptibility to DENV serotypes. This population showed a high vector competence for DENV-2 and DENV-3 strains and a low susceptibility to DENV-1 and DENV-4. Viral RNA copies in the SG remained constant for at least 21 dpi, which may enhance the vector capacity of A. aegypti and suggests the presence of a mechanism modulating virus replication in the SG.

Demonstration of efficient vertical and venereal transmission of dengue virus type-2 in a genetically diverse laboratory strain of Aedes aegypti

PLOS Neglected Tropical Diseases, 2018

Aedes aegypti is the primary mosquito vector of dengue viruses (DENV; serotypes 1-4). Human-mosquito transmission cycles maintain DENV during epidemics but questions remain regarding how these viruses survive when human infections and vector abundance are minimal. Aedes mosquitoes can transmit DENV within the vector population through two alternate routes: vertical and venereal transmission (VT and VNT, respectively). We tested the efficiency of VT and VNT in a genetically diverse laboratory (GDLS) strain of Ae. aegypti orally infected with DENV2 (Jamaica 1409). We examined F1 larvae from infected females generated during the first and second gonotrophic cycles (E1 and E2) for viral envelope (E) antigen by amplifying virus in C6/36 cells and then performing an indirect immunofluorescence assay (IFA). RT-PCR/nested PCR analyses confirmed DENV2 RNA in samples positive by IFA. We observed VT of virus to larvae and adult male progeny and VNT of virus to uninfected virgin females after mating with males that had acquired virus by the VT route. We detected no DENV2 in 30 pools (20 larvae/pool) of F1 larvae following the first gonotrophic cycle, suggesting limited virus dissemination at 7 days post-infection. DENV2 was detected by IFA in 27 of 49 (55%) and 35 of 51 (68.6%) F1 larval pools (20 larvae/pool) from infected E2 females that received a second blood meal without virus at 10 or 21 days post-infection (E2-10d-F1 and E2-21-F1), respectively. The minimum filial infection rates by IFA for E2-10d-F1 and E2-21d-F1 mosquitoes were 1:36 and 1:29, respectively. The VNT rate from E2-10d-F1 males to virgin (uninfected) GDLS females was 31.6% (118 of 374) at 8 days post mating. Twenty one percent of VNT-infected females receiving a blood meal prior to mating had disseminated virus in their heads, suggesting a potential pathway for virus to re-enter the human-mosquito transmission cycle. This is the first report of VNT of DENV by male Ae. aegypti and the first demonstration of sexual transmission in Aedes by naturally infected males. Our

Laboratory Testing of Transovarial Transmission in Aedes Aegypti Mosquito

2014

Introduction: Ae. aegypti is one of the vectors causing Dengue Hemorrhagic Fever (DHF) that feeds on human blood suffering from DHF and transmit it to another healthy human. The ability of Dengue Virus (DENV) to survive in nature is due to 2 mechanisms i.e. horizontal transmission among viremic vertebratae infected by Aedes mosquitos and vertical (transovarial) transmission from infected female mosquito to another generation. Objectives: To know the differences between next generation’s viral carriage, percentage ofmosquito descendants carrying DENV, and the distribution of DENV in its infected mosquitos. Methods: Study design was a quasi experimental posttest-only design with control group. The study was conducted on 53 second-generation female Ae. aegypti mosquitos which are grouped into treatment and control groups. Dengue Viral antigen in both groups were detected by immunohistochemistry method using Streptavidin Biotin Peroxidase Complex (SBPC) in paraffin embedding preparation...