Investigation of the 3D pore structure of a natural shale - implications for mass transport (original) (raw)

Understanding fluid transport through the multiscale pore network of a natural shale

EPJ Web of Conferences

The pore structure of a natural shale is obtained by three imaging means. Micro-tomography results are extended to provide the spatial arrangement of the minerals and pores present at a voxel size of 700 nm (the macroscopic scale). FIB/SEM provides a 3D representation of the porous clay matrix on the so-called mesoscopic scale (10-20 nm); a connected pore network, devoid of cracks, is obtained for two samples out of five, while the pore network is connected through cracks for two other samples out of five. Transmission Electron Microscopy (TEM) is used to visualize the pore space with a typical pixel size of less than 1 nm and a porosity ranging from 0.12 to 0.25. On this scale, in the absence of 3D images, the pore structure is reconstructed by using a classical technique, which is based on truncated Gaussian fields. Permeability calculations are performed with the Lattice Boltzmann Method on the nanoscale, on the mesoscale, and on the combination of the two. Upscaling is finally done (by a finite volume approach) on the bigger macroscopic scale. Calculations show that, in the absence of cracks, the contribution of the nanoscale pore structure on the overall permeability is similar to that of the mesoscale. Complementarily, the macroscopic permeability is measured on a centimetric sample with a neutral fluid (ethanol). The upscaled permeability on the macroscopic scale is in good agreement with the experimental results.

Three-scale analysis of the permeability of a natural shale

Physical Review E

The macroscopic permeability of a natural shale is determined by using structural measurements on three different scales. Transmission electron microscopy yields two-dimensional (2D) images with pixels smaller than 1 nm; these images are used to reconstruct 3D nanostructures. Three-dimensional focused ion beam-scanning electron microscopy (5.95-to 8.48-nm voxel size) provides 3D mesoscale pores of limited relative volume (1.71-5.9%). Micro-computed tomography (700-nm voxel size) provides information on the mineralogy of the shale, including the pores on this scale which do not percolate; synthetic 3D media are derived on the macroscopic scale by a training image technique. Permeability of the nanoscale, of the mesoscale structures and of their superposition is determined by solving the Stokes equation and this enables us to estimate the permeabilities of the 700-nm voxels located within the clay matrix. Finally, the Darcy equation is solved on synthetic 3D macroscale media to obtain the macroscopic permeability which is found in good agreement with experimental results obtained on the centimetric scale.

Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity

Scientific reports, 2015

Porous structures of shales are reconstructed using the markov chain monte carlo (MCMC) method based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analysis of the reconstructed shales is performed, including porosity, pore size distribution, specific surface area and pore connectivity. The lattice Boltzmann method (LBM) is adopted to simulate fluid flow and Knudsen diffusion within the reconstructed shales. Simulation results reveal that the tortuosity of the shales is much higher than that commonly employed in the Bruggeman equation, and such high tortuosity leads to extremely low intrinsic permeability. Correction of the intrinsic permeability is performed based on the dusty gas model (DGM) by considering the contribution of Knudsen diffusion to the total flow flux, resulting in apparent permeability. The correction factor over a range of Knudsen number and pressure is estimated and compared with empirical correlations in...

Semi-quantitative multiscale modelling and flow simulation in a nanoscale porous system of shale

Fuel, 2018

Numerical flow simulation in shale, especially in the nanoscale porous system of a shale matrix, is still challenging because no imaging device can effectively describe the nanoscale porous structure of shale to satisfy both resolution and field of view (FOV). The resolution of an X-ray computed tomography (µ-CT) image is too low to detect the nanoscale features of porous structure in shale. The FOV of a focused ion beam scanning electron microcopy (FIB-SEM) image, on the other hand, is too small to capture the heterogeneity of a shale matrix. Therefore, we propose a semi-quantitative, Multiscale reconstruction strategy to build an image based network model of a shale sample with nanoscale resolution covering three orders of magnitude of FIB-SEM image volume. In this study, shale is considered a Multiscale porous media consisting of microscale and nanoscale structures. The microscale structures reflect the morphological features of organic matter, clay minerals, intergranular pores and micro-cracks that can be detected by µ-CT. The nanoscale features focus on the inner porous structure of organic matter and clay minerals that can be characterised using a scanning electron microcopy (SEM) or a FIB-SEM. nanoscale. Multiscale means reconstruction work that is carried out at the microscale and nanoscale separately, using the multiple-point statistics (MPS) method. Microscale reconstruction aims to recover the connections that are undetected among microscale objects due to the low resolution of the µ-CT image. Within the organic and clay phases, a nanoscale reconstruction is then carried out to model the nanoscale porous structure. Semi-quantitative means the segmented µ-CT image is used as conditional data in microscale reconstruction to maintain the reality of microscale structures. To relieve the heavy burden of data storage, a network modelling procedure is simultaneously undertaken alongside nanoscale reconstruction to transfer the reconstructed structure to a network model. Based on the established network model, flow simulation is undertaken by applying an extended Beskok-Karniadakis (B-K) model considering continuum, non-continuum and surface diffusion. The results show that the permeability ratio is affected by pressure, the molecule diameter of gas and surface diffusion.

Hierarchical integration of porosity in shales

Scientific reports, 2018

Pore characterization in shales is challenging owing to the wide range of pore sizes and types present. Haynesville-Bossier shale (USA) was sampled as a typical clay-bearing siliceous, organic-rich, gas-mature shale and characterized over pore diameters ranging 2 nm to 3000 nm. Three advanced imaging techniques were utilized correlatively, including the application of Xe plasma focused ion beam scanning electron microscopy (plasma FIB or PFIB), complemented by the Ga FIB method which is now frequently used to characterise porosity and organic/inorganic phases, together with transmission electron microscope tomography of the nano-scale pores (voxel size 0.6 nm; resolution 1-2 nm). The three pore-size scales each contribute differently to the pore network. Those <10 nm (greatest number), 10 nm to 100 nm (best-connected hence controls transport properties), and >100 nm (greatest total volume hence determines fluid storativity). Four distinct pore types were found: intra-organic, ...

Mesoscale structure, mechanics, and transport properties of source rocks’ organic pore networks

Proceedings of the National Academy of Sciences

Organic matter is responsible for the generation of hydrocarbons during the thermal maturation of source rock formation. This geochemical process engenders a network of organic hosted pores that governs the flow of hydrocarbons from the organic matter to fractures created during the stimulation of production wells. Therefore, it can be reasonably assumed that predictions of potentially recoverable confined hydrocarbons depend on the geometry of this pore network. Here, we analyze mesoscale structures of three organic porous networks at different thermal maturities. We use electron tomography with subnanometric resolution to characterize their morphology and topology. Our 3D reconstructions confirm the formation of nanopores and reveal increasingly tortuous and connected pore networks in the process of thermal maturation. We then turn the binarized reconstructions into lattice models including information from atomistic simulations to derive mechanical and confined fluid transport pr...

Prediction of permeability and formation factor of sandstone with hybrid lattice Boltzmann/finite element simulation on microtomographic images

International Journal of Rock Mechanics and Mining Sciences, 2018

In Fontainebleau sandstone, the evolution of transport properties with porosity is related to changes in both the size and connectivity of the pore space. Microcomputed tomography can be used to characterize the relevant geometric attributes, with the resolution that is sufficiently refined for realistic simulation of transport properties based on the 3D image. In this study, we adopted a hybrid computation scheme that is based on a hierarchical multi-scale approach. The specimen was partitioned into cubic sub-volumes for pore-scale simulation of hydraulic permeability and formation factor using the lattice Boltzmann method. The pore-scale results were then linked with finite element simulation in a homogenized scheme to compute and upscale the transport properties to specimen scale. The simulated permeability and formation factor have magnitude and anisotropy that are in good agreement with experimental rock physics data. Together with simulated and measured values of connected porosity and specific surface area, they provide useful insights into how pore geometry controls the evolution of the transport properties.

Three-dimensional pore networks and transport properties of a shale gas formation determined from focused ion beam serial imaging

International Journal of Oil, Gas and Coal Technology, 2012

Three-dimensional pore network reconstructions of mudstone properties are made using dual focused ion beam-scanning electron microscopy (FIB-SEM). Samples of Jurassic Haynesville Formation mudstone are examined with FIB-SEM and image analysis to determine pore properties, topology, and tortuosity. Resolvable pore morphologies (>~10 nm) include large slit-like pores between clay aggregates and smaller pores in strain shadows surrounding larger clastic grains. Mercury injection capillary pressure (MICP) data suggest a dominant 1-10 nm or less size of pores barely resolvable by FIB-SEM imaging. Computational fluid dynamics modelling is used to calculate single phase permeability of the larger pore networks on the order of a few nanodarcys (which compare favourably with core-scale permeability tests). This suggests a pore hierarchy wherein permeability may be limited by connected networks of inter-aggregate pores larger than about 20 nm, while MICP results reflect smaller connected networks of pores residing in the clay matrix. [

Specific surface area and pore-size distribution in clays and shales

Geophysical Prospecting, 2013

One of the biggest challenges in estimating the elastic, transport and storage properties of shales has been a lack of understanding of their complete pore structure. The shale matrix is predominantly composed of micropores (pores less than 2 nm diameter) and mesopores (pores with 2-50 nm diameter). These small pores in the shale matrix are mainly associated with clay minerals and organic matter and comprehending the controls of these clays and organic matter on the pore-size distribution is critical to understand the shale pore network. Historically, mercury intrusion techniques are used for pore-size analysis of conventional reservoirs. However, for unconventional shale reservoirs, very high pressures (> 414 MPa (60 000 psi)) would be required for mercury to access the full pore structure, which has potential pitfalls. Current instrumental limitations do not allow reliable measurement of significant portions of the total pore volume in shales. Nitrogen gas-adsorption techniques can be used to characterize materials dominated by micro-and mesopores (2-50 nm). A limitation of this technique is that it fails to measure large pores (diameter >300 nm). We use a nitrogen gas-adsorption technique to study the micro-and mesopores in shales and clays and compare the results from conventional mercury porosimetry techniques. Our results on pure clay minerals and natural shales show that (i) they have a multiscale pore structure at different dimensions (ii) fine mesopores, with a characteristic 3 nm pore size obtained with N 2 gas-adsorption are associated with an illite-smectite group of clays but not with kaolinite; (iii) compaction results in a decrease of pore volume and a reduction of pore size in the 'inter-aggregate' macropores of the illitesmectite clays while the fine 'intra-tachoid' mesopores are shielded from compaction; (iv) for natural shales, mineralogy controls the pore-size distributions for shales and the presence of micropores and fine mesopores in natural shales can be correlated with the dominance of the illite-smectite type of clays in the rock. Our assessment of incompressible 3 nm sized pores associated with illite-smectite clays provides an important building block for their mineral modulus.

Multi-Scale Imaging and Transport Properties in Shales from Experiments and Molecular Dynamics Simulations

Filling the Gaps – from Microscopic Pore Structures to Transport Properties in Shales, 2000

Transport properties in shales were investigated using experimental and computersimulation methods. First, an experimental method based on a transient pressuredecay technique was further developed and used instead of classical Darcy core-flood methods. This has allowed measurement of the permeability of tight shale samples on much shorter time scales than by conventional methods. Second, molecular dynamics (MD) computer simulations were used to measure the diffusion coefficients of water and cations in a model clay sample. Measurements of the self-diffusion coefficient showed that the values increased with increasing water content. The results for Na-, Li-, and K-smectites are in satisfactory agreement with experimental and with other simulation results in the literature indicating that the clay interlayer space is an important route of transport for ions and water. The results also lend credibility to the correctness of the diffusion coefficients obtained from the current MD simulations.