FilMINT: An Outerapproximation-Based Solver for Nonlinear Mixed Integer Programs (original) (raw)

FilMINT: An Outer Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs

2010

We describe a new solver for mixed integer nonlinear programs (MINLPs) that implements a linearization-based algorithm. The solver is based on the algorithm by Quesada and Grossmann, and avoids the complete solution of master mixed integer linear programs (MILPs) by adding new linearizations at open nodes of the branch-and-bound tree whenever an integer solution is found. The new solver, FilMINT, combines the MINTO branch-and-cut framework for MILP with filterSQP used to solve the nonlinear programs that arise as subproblems in the algorithm. The MINTO framework allows us to easily extend cutting planes, primal heuristics, and other well-known MILP enhancements to MINLPs. We present detailed computational experiments that show the benefit of such advanced MILP techniques. We offer new suggestions for generating and managing linearizations that are shown to be efficient on a wide range of MINLPs. Comparisons to existing MINLP solvers are presented, that highlight the effectiveness of FilMINT.

An outer-approximation algorithm for a class of mixed-integer nonlinear programs

Mathematical Programming, 1986

An outer-approximation algorithm is presented for solving mixed-integer nonlinear programming problems of a particular class. Linearity of the integer (or discrete) variables, and convexity of the nonlinear functions involving continuous variables are the main features in the underlying mathematical structure. Based on principles of decomposition, outer-approximation and relaxation, the proposed algorithm effectively exploits the structure of the problems, and consists of solving an alternating finite sequence of nonlinear programming subproblems and relaxed versions of a mixed-integer linear master program. Convergence and optimality properties of the algorithm are presented, as well as a general discussion on its implementation. Numerical results are reported for several example problems to illustrate the potential of the proposed algorithm for programs in the class addressed in this paper. Finally, a theoretical comparison with generalized Benders decomposition is presented on the lower bounds predicted by the relaxed master programs.

Linearization-based algorithms for mixed-integer nonlinear programs with convex continuous relaxation

We present two linearization-based algorithms for mixed-integer nonlinear programs (MINLPs) having a convex continuous relaxation. The key feature of these algorithms is that, in contrast to most existing linearization-based algorithms for convex MINLPs, they do not require the continuous relaxation to be defined by convex nonlinear functions. For example, these algorithms can solve to global optimality MINLPs with constraints defined by quasiconvex functions. The first algorithm is a slightly modified version of the LP/NLP-based branch-and-bouund ( LP/NLP-BB ) algorithm of Quesada and Grossmann, and is closely related to an algorithm recently proposed by Bonami et al. (Math Program 119:331–352, 2009). The second algorithm is a hybrid between this algorithm and nonlinear programming based branch-and-bound. Computational experiments indicate that the modified LP/NLP-BB method has comparable performance to LP/NLP-BB on instances defined by convex functions. Thus, this algorithm has the potential to solve a wider class of MINLP instances without sacrificing performance.

An algorithmic framework for convex mixed integer nonlinear programs

Discrete Optimization, 2008

This paper is motivated by the fact that mixed integer nonlinear programming is an important and difficult area for which there is a need for developing new methods and software for solving large-scale problems. Moreover, both fundamental building blocks, namely mixed integer linear programming and nonlinear programming, have seen considerable and steady progress in recent years. Wishing to exploit expertise in these areas as well as on previous work in mixed integer nonlinear programming, this work represents the first step in an ongoing and ambitious project within an open-source environment. COIN-OR is our chosen environment for the development of the optimization software. A class of hybrid algorithms, of which branch and bound and polyhedral outer approximation are the two extreme cases, is proposed and implemented. Computational results that demonstrate the effectiveness of this framework are reported, and a library of mixed integer nonlinear problems that exhibit convex continuous relaxations is made publicly available.

The decomposition-based outer approximation algorithm for convex mixed-integer nonlinear programming

Journal of Global Optimization, 2020

This paper presents a new two-phase method for solving convex mixed-integer nonlinear programming (MINLP) problems, called Decomposition-based Outer Approximation Algorithm (DECOA). In the first phase, a sequence of linear integer relaxed sub-problems (LP phase) is solved in order to rapidly generate a good linear relaxation of the original MINLP problem. In the second phase, the algorithm solves a sequence of mixed integer linear programming sub-problems (MIP phase). In both phases the outer approximation is improved iteratively by adding new supporting hyperplanes by solving many easier sub-problems in parallel. DECOA is implemented as a part of Decogo (Decomposition-based Global Optimizer), a parallel decomposition-based MINLP solver implemented in Python and Pyomo. Preliminary numerical results based on 70 convex MINLP instances up to 2700 variables show that due to the generated cuts in the LP phase, on average only 2-3 MIP problems have to be solved in the MIP phase.

An Exact Penalty Approach for Mixed Integer Nonlinear Programming Problems

American Journal of Operations Research, 2011

We propose an exact penalty approach for solving mixed integer nonlinear programming (MINLP) problems by converting a general MINLP problem to a finite sequence of nonlinear programming (NLP) problems with only continuous variables. We express conditions of exactness for MINLP problems and show how the exact penalty approach can be extended to constrained problems.

Review of nonlinear mixed-integer and disjunctive programming techniques

Optimization and Engineering, 2002

This paper has as a major objective to present a unified overview and derivation of mixed-integer nonlinear programming (MINLP) techniques, Branch and Bound, Outer-Approximation, Generalized Benders and Extended Cutting Plane methods, as applied to nonlinear discrete optimization problems that are expressed in algebraic form. The solution of MINLP problems with convex functions is presented first, followed by a brief discussion on extensions for the nonconvex case. The solution of logic based representations, known as generalized disjunctive programs, is also described. Theoretical properties are presented, and numerical comparisons on a small process network problem.

Convex mixed integer nonlinear programming problems and an outer approximation algorithm

Journal of Global Optimization, 2015

In this paper, we mainly study one class of convex mixed-integer nonlinear programming problems (MINLPs) with non-differentiable data. By dropping the differentiability assumption, we substitute gradients with subgradients obtained from KKT conditions, and use the outer approximation method to reformulate convex MINLP as one equivalent MILP master program. By solving a finite sequence of subproblems and relaxed MILP problems, we establish an outer approximation algorithm to find the optimal solution of this convex MINLP. The convergence of this algorithm is also presented. The work of this paper generalizes and extends the outer approximation method in the sense of dealing with convex MINLPs from differentiable case to non-differentiable one.

Non-convex mixed-integer nonlinear programming: A survey

Surveys in Operations Research and Management Science, 2012

A wide range of problems arising in practical applications can be formulated as Mixed-Integer Nonlinear Programs (MINLPs). For the case in which the objective and constraint functions are convex, some quite effective exact and heuristic algorithms are available. When nonconvexities are present, however, things become much more difficult, since then even the continuous relaxation is a global optimisation problem. We survey the literature on non-convex MINLP, discussing applications, algorithms and software. Special attention is paid to the case in which the objective and constraint functions are quadratic.