The NOTCH1/CD44 axis drives pathogenesis in a T cell acute lymphoblastic leukemia model (original) (raw)

NOTCH is a key regulator of human T-cell acute leukemia initiating cell activity

Blood, 2009

activity NOTCH is a key regulator of human T-cell acute leukemia initiating cell http://bloodjournal.hematologylibrary.org/content/113/8/1730.full.html Updated information and services can be found at: (1298 articles) Lymphoid Neoplasia (3082 articles) Hematopoiesis and Stem Cells Articles on similar topics can be found in the following Blood collections http://bloodjournal.hematologylibrary.org/site/misc/rights.xhtml#repub\_requests

NOTCH1 Signaling Promotes Human T-Cell Acute Lymphoblastic Leukemia Initiating Cell Regeneration in Supportive Niches

PLOS One, 2012

Background: Leukemia initiating cells (LIC) contribute to therapeutic resistance through acquisition of mutations in signaling pathways, such as NOTCH1, that promote self-renewal and survival within supportive niches. Activating mutations in NOTCH1 occur commonly in T cell acute lymphoblastic leukemia (T-ALL) and have been implicated in therapeutic resistance. However, the cell type and context specific consequences of NOTCH1 activation, its role in human LIC regeneration, and sensitivity to NOTCH1 inhibition in hematopoietic microenvironments had not been elucidated.

Notch Partners in the Long Journey of T-ALL Pathogenesis

International Journal of Molecular Sciences

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease that arises from the oncogenic transformation of developing T cells during T-lymphopoiesis. Although T-ALL prognosis has improved markedly in recent years, relapsing and refractory patients with dismal outcomes still represent a major clinical issue. Consequently, understanding the pathological mechanisms that lead to the appearance of this malignancy and developing novel and more effective targeted therapies is an urgent need. Since the discovery in 2004 that a major proportion of T-ALL patients carry activating mutations that turn NOTCH1 into an oncogene, great efforts have been made to decipher the mechanisms underlying constitutive NOTCH1 activation, with the aim of understanding how NOTCH1 dysregulation converts the physiological NOTCH1-dependent T-cell developmental program into a pathological T-cell transformation process. Several molecular players have so far been shown to cooperate with NOTCH...

CDK6-mediated repression of CD25 is required for induction and maintenance of Notch1-induced T-cell acute lymphoblastic leukemia

Leukemia, 2015

T-cell acute lymphoblastic leukemia (T-ALL) is a high-risk subset of acute leukemia, characterized by frequent activation of Notch1 or AKT signaling, where new therapeutic approaches are needed. We showed previously that cyclin-dependent kinase 6 (CDK6) is required for thymic lymphoblastic lymphoma induced by activated AKT. Here, we show CDK6 is required for initiation and maintenance of Notch-induced T-ALL. In a mouse retroviral model, hematopoietic stem/progenitor cells lacking CDK6 protein or expressing kinase-inactive (K43M) CDK6 are resistant to induction of T-ALL by activated Notch, whereas those expressing INK4-insensitive (R31C) CDK6 are permissive. Pharmacologic inhibition of CDK6 kinase induces CD25 and RUNX1 expression, cell cycle arrest and apoptosis in mouse and human T-ALL. Ablation of Cd25 in a K43M background restores Notch-induced T leukemogenesis, with disease that is resistant to CDK6 inhibitors in vivo. These data support a model whereby CDK6-mediated suppression...

Combined expression of pT and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis

Proceedings of The National Academy of Sciences, 2002

Notch receptors are conserved regulators of cell fate and have been implicated in the regulation of T cell differentiation and lymphomagenesis. However, neither the generality of Notch involvement in leukemia, nor the molecules with which Notch may interact have been clarified. Recently, we showed that transgenic mice expressing the constitutively active intracellular domain of Notch3 in thymocytes and T cells developed early and aggressive T cell neoplasias. Although primarily splenic, the tumors sustained features of immature thymocytes, including expression of pT␣, a defining component of the pre T cell receptor, known to be a potent signaling complex provoking thymocyte survival, proliferation, and activation. Thus, enforced expression of Notch3, which is ordinarily down-regulated as thymocytes mature, may sustain pre T cell receptor expression, causing dysregulated hyperplasia. This hypothesis has been successfully tested in this article by the observation that deletion of pT␣ in Notch3 transgenic mice abrogates tumor development, indicating a crucial role for pT␣ in T cell leukemogenesis. Parallel observations were made in humans, in that all T cell acute lymphoblastic leukemias examined showed expression of Notch3 and of the Notch target gene HES-1, as well as of pT␣ a and b transcripts, whereas the expression of all these genes was dramatically reduced or absent in remission. Together, these results suggest that the combined expression of Notch3 and pT␣ sustains T cell leukemogenesis and may represent pathognomonic molecular features of human T-ALL.

NOTCH1 Is Aberrantly Activated in Chronic Lymphocytic Leukemia Hematopoietic Stem Cells

Frontiers in oncology, 2018

To investigate chronic lymphocytic leukemia (CLL)-initiating cells, we assessed mutation/expression in hematopoietic stem cells (HSCs). In mutated CLL, we detected subclonal mutations in 57% CD34+/CD38- HSCs. mutation was present in 66% CD34+/CD38+ progenitor cells displaying an increased mutational burden compared to HSCs. Flow cytometric analysis revealed significantly higher NOTCH1 activation in CD34+/CD38- and CD34+/CD38+ cells from CLL patients, regardless mutation compared to healthy donors. Activated NOTCH1 resulted in overexpression of the NOTCH1 target c-MYC. We conclude that activated NOTCH1 is an early event in CLL that may contribute to aberrant HSCs in this disease.

Activating mutations in NOTCH1 in acute myeloid leukemia and lineage switch leukemias

Leukemia, 2006

Activating mutations in NOTCH1 are found in over 50% of human T-cell lymphoblastic leukemias (T-ALLs). Here, we report the analysis for activating NOTCH1 mutations in a large number of acute myeloid leukemia (AML) primary samples and cell lines. We found activating mutations in NOTCH1 in a single M0 primary AML sample, in three (ML1, ML2 and CTV-1) out of 23 AML cell lines and in the diagnostic (myeloid) and relapsed (T-lymphoid) clones in a patient with lineage switch leukemia. Importantly, the ML1 and ML2 AML cell lines are derived from an AML relapse in a patient initially diagnosed with T-ALL. Overall, these results demonstrate that activating mutations in NOTCH1 are mostly restricted to T-ALL and are rare in AMLs. The presence of NOTCH1 mutations in myeloid and T-lymphoid clones in lineage switch leukemias establishes the common clonal origin of the diagnostic and relapse blast populations and suggests a stem cell origin of NOTCH1 mutations during the molecular pathogenesis of these tumors.