Secure Transmission and Recovery of Embedded Patient Information from Biomedical Images of Different Modalities through a Combination of Cryptography and Watermarking (original) (raw)
Related papers
A Methodological Evaluation of Crypto-Watermarking System for Medical Images
Cloud Computing Systems and Applications in Healthcare
Health care institution demands exchange of medical images of number of patients to sought opinions from different experts. In order to reduce storage and for secure transmission of the medical images, Crypto-Watermarking techniques are adopted. The system is considered to be combinations of encryption technique with watermarking or steganography means adopted for safe transfer of medical images along with embedding of optional medical information. The Digital Watermarking is the process of embedding data to multimedia content. This can be done in spatial as well as frequency domain of the cover image to be transmitted. The robustness against attacks is ensured while embedding the encrypted data into transform domain, the encrypted data can be any secret key for the content recovery or patient record or the image itself. This chapter presents basic aspects of crypto-watermarking technique, as an application. It gives a detailed assessment on different approaches of crypto-watermarki...
Secure Sharing of Medical Images using Watermarking Technique
The advanced healthcare system needs to share electronic patient record (EPR) among different hospitals and specialists for better and easy treatment of patient. However, the protection of the EPR from unauthorized access and malicious attacks is primary concern to preserve the privacy and proper diagnosis. Medical image watermarking in E-health care system is a suitable technique for safety and confidentiality of EPR. In this paper the medical image is separated into region of interest (ROI) and region of non interest (RONI) part, subsequently additive encryption technique is applied to embed patient record into ROI part of cover media. Backup of original information is embedded into RONI part for tamper detection. Thereafter visible hospital logo is embedded into watermarked medical image for identification purpose. Result of this algorithm tested over few medical images and that produces effectiveness of data payload and integrity.
Combining Cryptography and Digital Watermarking for Secured Transmission of Medical Images
Telemedicine has increased the number of ways in which healthcare can be delivered across places and countries instead of requiring the provider and the recipient to be present in the same place. One application of telemedicine is the exchange of medical images between remotely located healthcare entities. However, a maj or obstacle telemedicine faces is providing confidentiality, integrity, and authenticity to transmitted medical images. In this paper, we propose a hybrid algorithm which combines encryption and digital watermarking techniques in order to provide the required authenticity and integrity services. A cryptographic watermark and the patient's data are hidden in the cover image before being transmitted over vulnerable public networks. On the receiver's side, the watermarked image is handled by the extraction procedure in order to extract the cryptographic watermarks and the embedded medical data. The proposed algorithm was tested and evaluated using medical images of two different modalities. The experimental results demonstrate the effectiveness of the proposed algorithm.
Egyptian Informatics Journal, 2013
Nowadays; modern Hospital Data Management Systems (HDMSs) are applied in a computer network; in addition medicinal equipments produce medical images in a digital form. HDMS must store and exchange these images in a secured environment to provide image integrity and patient privacy. The reversible watermarking techniques can be used to provide the integrity and the privacy. In this paper, a security technique based on watermarking and encryption is proposed to be used for Digital Imaging and Communications in Medicine (DICOM). It provides patient authentication, information confidentiality and integrity based on reversible watermark. To achieve integrity service at the sender side; a hash value based on encrypted MD5 is determined from the image. And to satisfy the reversible feature; R-S-Vector is determined from the image and is compressed based on a Huffman compression algorithm. After that to provide confidentiality and authentication services: the compressed R-S-Vector, the hash value and patient ID are concatenated to form a watermark then this watermark is encrypted using AES encryption technique, finally the watermark is embedded inside the medical image. Experimental results prove that the proposed technique can provide patient authentication services, image integrity service and information confidentiality service with excellent efficiency. Concluded results for all tested DICOM medical images and natural images show the following: BER equals 0, both of SNR and PSNR are consistent and have large values, and MSE has low value; the average values of SNR, PSNR and MSE are 52 dB, 57 dB and 0.12 respectively. Therefore, watermarked images have high imperceptibility, invisibility and transparency. In addition, the watermark extracted from the image at the
A Survey On Various Watermarking and Cryptography Techniques for Data Hiding in Medical Images
Water marking scheme is use for secure the data to protect digital content from unauthorized modification. The digital image watermarking technology is an important aspect about multimedia authentication and copyright protection, in order to enhance its reliability and security. Image watermarking scheme can effectively be used in medical image processing to authenticate or investigate the integrity on medical images. Join cryptography and watermarking is efficient method for security. Peak Signal to Noise Ratios and Normalized Correlation are computed to accesses the quality of the watermarked images and extracted the information of images.
Engineering and Scientific International Journal, 2019
Medical Imaging has remoulded the Healthcare system. It has become a vital tool for rapid diagnosis with visualisation of the interior of the body. Telemedicine is that the remote delivery of healthcare services over the telecommunication infrastructure. This paper aims at providing security to the medical images transmitted over public networks. It addresses the following traits of Medical Image Security namely: Confidentiality, Patient's control, Data Integrity and Consent Exception .The objective of the paper roots on providing theoretical ideas by combining Watermarking schemes with Cryptography techniques for developing enhanced security algorithms for transaction of medical images. The various parameters used for the measurement of the performance and effectiveness of the proposed algorithms such as Entropy, Number of Pixel Change Rate, Unified Average Change in Intensity, Correlation Coefficient, Mean Squared Error and Peak Signal to Noise Ratio are discussed. This paper provides a road map in constructing new algorithm by combining cryptography and watermarking technique for secure transaction of medical.
Medical image content protection by secret information hiding to support telemedicine
2016
The protection of digital medical image comprises at least two main aspects: security and authentication. In order to ensure the security, the information has to be protected from the unauthorized users while the authentication confirms that the received data is not affected or modified and is sent by the intended sender (watermarking). The cryptography technique proves the security issues by assuming the intended sender and intended receiver have some security aspects called keys. So, after encryption of the digital material from the sender side, the person who has the key (receiver) can decrypt and access the content of the digital material. In this thesis, we have brought several contributions. The main one is the provision of robust and reversible medical image watermarking solutions in the spatial domain based respectively on FCA and ZBDD. The second one is a semiblind medical image watermarking approach for the tamper detection. Another contribution is the proposal of a secure symmetric encryption system based on N-gram. The last contribution is a hybrid watermarking and cryptography medical image system which focuses on a new form of chaotic map to generate keys with specific properties, and achieves better efficiency, high robustness and low complexity than the existing approaches.
2016
The protection of digital medical image comprises at least two main aspects: security and authentication. In order to ensure the security, the information has to be protected from the unauthorized users while the authentication confirms that the received data is not affected or modified and is sent by the intended sender (watermarking). The cryptography technique proves the security issues by assuming the intended sender and intended receiver have some security aspects called keys. So, after encryption of the digital material from the sender side, the person who has the key (receiver) can decrypt and access the content of the digital material. In this thesis, we have brought several contributions. The main one is the provision of robust and reversible medical image watermarking solutions in the spatial domain based respectively on FCA and ZBDD. The second one is a semi-blind medical image watermarking approach for the tamper detection. Another contribution is the proposal of a secur...
Crypto-Watermarking of Transmitted Medical Images
Journal of Digital Imaging, 2016
Telemedicine is a booming healthcare practice that has facilitated the exchange of medical data and expertise between healthcare entities. However, the widespread use of telemedicine applications requires a secured scheme to guarantee confidentiality and verify authenticity and integrity of exchanged medical data. In this paper, we describe a regionbased, crypto-watermarking algorithm capable of providing confidentiality, authenticity, and integrity for medical images of different modalities. The proposed algorithm provides authenticity by embedding robust watermarks in images' region of non-interest using SVD in the DWT domain. Integrity is provided in two levels: strict integrity implemented by a cryptographic hash watermark, and content-based integrity implemented by a symmetric encryption-based tamper localization scheme. Confidentiality is achieved as a byproduct of hiding patient's data in the image. Performance of the algorithm was evaluated with respect to imperceptibility, robustness, capacity, and tamper localization, using different medical images. The results showed the effectiveness of the algorithm in providing security for telemedicine applications.
A Watermarking of Medical Image: Method Based" LSB
In this paper, we present a new approach for watermarking of medical image that we are trying to adapt to telemedicine. This approach is intended to insert a set of data in a medical image. These data should be imperceptible and robust to various attacks. It's containing the signature of the original image, the data specific to the patient and his diagnostic. The purpose of the watermarking method is to check the integrity and preservation of the confidentiality of patient data in a network sharing. This approach is based on the use the LSB (least significant bits) of the image and tools borrowed from cryptography.