Optimizing Antimicrobial Drug Use in Surgery: An Intervention Strategy in a Sudanese Hospital to Combat The emergence of Bacterial Resistance (original) (raw)

A Global Declaration on Appropriate Use of Antimicrobial Agents across the Surgical Pathway

Surgical Infections

This declaration, signed by an interdisciplinary task force of 234 experts from 83 different countries with different backgrounds, highlights the threat posed by antimicrobial resistance and the need for appropriate use of antibiotic agents and antifungal agents in hospitals worldwide especially focusing on surgical infections. As such, it is our intent to raise awareness among healthcare workers and improve antimicrobial prescribing. To facilitate its dissemination, the declaration was translated in different languages. A ntimicrobial resistance (AMR) has emerged as one of the principal public health problems of the 21st century. This has resulted in a public health crisis of international concern, which threatens the practice of modern medicine, animal health, and food security. The substantial problem of AMR is especially relevant to antibiotic resistance (ABR), although antifungal resistance is increasing at an alarming rate. Although the phenomenon of ABR can be attributed to many factors, there is a well-established relationship between antibiotic prescribing practices and the emergence of resistant bacteria. This declaration, signed by an interdisciplinary task force of 234 experts from 83 different countries with different backgrounds, highlights the threat posed by AMR and the need for appropriate use of antibiotic agents and antifungal agents in hospitals worldwide especially focusing on surgical infections.

Ten key points for the appropriate use of antibiotics in hospitalised patients: a consensus from the Antimicrobial Stewardship and Resistance Working Groups of the International Society of Chemotherapy

A B S T R A C T The Antibiotic Stewardship and Resistance Working Groups of the International Society for Chemother-apy propose ten key points for the appropriate use of antibiotics in hospital settings. (i) Get appropriate microbiological samples before antibiotic administration and carefully interpret the results: in the absence of clinical signs of infection, colonisation rarely requires antimicrobial treatment. (ii) Avoid the use of antibiotics to 'treat' fever: use them to treat infections, and investigate the root cause of fever prior to starting treatment. (iii) Start empirical antibiotic treatment after taking cultures, tailoring it to the site of infection, risk factors for multidrug-resistant bacteria, and the local microbiology and susceptibility patterns. (iv) Prescribe drugs at their optimal dosing and for an appropriate duration, adapted to each clinical situation and patient characteristics. (v) Use antibiotic combinations only where the current evidence suggests some benefit. (vi) When possible, avoid antibiotics with a higher likelihood of promoting drug resistance or hospital-acquired infections, or use them only as a last resort. (vii) Drain the infected foci quickly and remove all potentially or proven infected devices: control the infection source. (viii) Always try to de-escalate/streamline antibiotic treatment according to the clinical situation and the microbio-logical results. (ix) Stop unnecessarily prescribed antibiotics once the absence of infection is likely. And (x) Do not work alone: set up local teams with an infectious diseases specialist, clinical microbiologist, hospital pharmacist, infection control practitioner or hospital epidemiologist, and comply with hospital antibiotic policies and guidelines.

Prescribing patterns of antibiotics and sensitivity patterns of common microorganisms in the Surgery ward of a teaching hospital

International journal of applied research, 2018

Background: Information about antibiotic use and resistance patterns of common microorganisms are lacking in hospitals in Western Nepal. Excessive and inappropriate use of antibiotics contributes to the development of bacterial resistance. The parameter: Defined daily dose/100 bed-days, provides an estimate of consumption of drugs among hospital in-patients. This study was carried out to collect relevant demographic information, antibiotic prescribing patterns and the common organisms isolated including their antibiotic sensitivity patterns. Methods: The study was carried out over a 3-month period (01.04.2002 to 30.06.2002) at the Manipal Teaching Hospital, Western Nepal. The median number of days of hospitalization and mean ± SD cost of antibiotics prescribed during hospital stay were calculated. The use of antibiotics was classified for prophylaxis, bacteriologically proven infection or non-bacteriologically proven infection. Sensitivity patterns of the common organisms were determined. Defined daily dose/100 bed-days of the ten most commonly prescribed antibiotics were calculated. Results: 203 patients were prescribed antibiotics; 112 were male. Median duration of hospitalization was 5 days. 347 antibiotics were prescribed. The most common were ampicillin, amoxicillin, metronidazole, ciprofloxacin and benzylpenicillin. Mean ± SD cost of antibiotics was 16.5 ± 13.4 US$. Culture and sensitivity testing was carried out in 141 patients. The common organisms isolated were H. influenzae, E. coli, K. pneumoniae and S. aureus. Conclusions: Antibiotic resistance is becoming a problem in the Internal Medicine ward. Formulation of a policy for hospital antibiotic use and an educational programme especially for junior doctors is required.