The Plant NADPH Oxidase RBOHD Mediates Rapid Systemic Signaling in Response to Diverse Stimuli (original) (raw)
Related papers
Long-Distance Systemic Signaling and Communication in Plants
Signaling and Communication in Plants, 2013
Systemic signalling of photooxidative stress from a high light (HL)exposed leaf to a shaded leaf results in systemic acquired acclimation (SAA) in the distal tissue. As yet unanswered questions in systemic photooxidative stress signalling are in regard to what type of signal and what form of travel the signal takes from a small area of exposed tissue to as yet unstressed distal tissues. Issues such as the specificity of different stress responses, how different ROS signalling pathways converge, and antagonistically regulated systems are all currently being investigated. The majority of studies in this field, however, focus on the intercellular signalling aspects rather than leaf-to-leaf movement of the signal. Traditional studies of biotic long-distance signalling have not as yet been comprehensively applied to abiotic stress signalling research, particularly in regard to whether an abiotic signal is able to rapidly travel through the vasculature from leaf to leaf. This review covers literature relating to the effects that HL intensity and the production of ROS have on the stress signalling processes of light perception, retrograde and intercellular signalling, as well as leaf-to-leaf systemic signalling in the model organism Arabidopsis thaliana.
Molecular Plant-Microbe Interactions, 2009
Chemiluminescence detection of reactive oxygen species (ROS) triggered in tobacco BY-2 cells by the fungal elicitor cryptogein was previously demonstrated to be abolished in cells transformed with an antisense construct of the plasma membrane NADPH oxidase, NtrbohD. Here, using electron microscopy, it has been confirmed that the first hydrogen peroxide production occurring a few minutes after challenge of tobacco cells with cryptogein is plasma membrane located and NtrbohD mediated. Furthermore, the presence of NtrbohD in detergent-resistant membrane fractions could be associated with the presence of NtrbohD-mediated hydrogen peroxide patches along the plasma membrane. Comparison of the subcellular localization of ROS in wild-type tobacco and in plants transformed with antisense constructs of NtrbohD revealed that this enzyme is also responsible for the hydrogen peroxide production occurring at the plasma membrane after infiltration of tobacco leaves with cryptogein. Finally, the reactivity of wild-type and transformed plants to the elicitor and their resistance against the pathogenic oomycete Phytophthora parasitica were examined. NtrbohD-mediated hydrogen peroxide production does not seem determinant for either hypersensitive response development or the establishment of acquired resistance but it is most likely involved in the signaling pathways associated with the protection of the plant cell. Plants are exposed to a large number of microorganisms, although only a relatively small proportion of them are able to cause diseases. Prevention of penetration by pathogens during plant infection is generally dependent on an accurate time course of the pathogen perception by host cells and activation of a signaling cascade triggering a network of coordinated responses. The rapid production of reactive oxygen species (ROS), called the oxidative burst, is one of the earliest events detected during incompatible interactions between plants and pathogens. The generation of ROS has been considered for a long time to contribute to several disease resistance strategies (antimicrobial activity, cross-linking of cell wall proteins, induction of defense related genes, and so on) (
The Language of Reactive Oxygen Species Signaling in Plants
Journal of Botany, 2012
Reactive oxygen species (ROS) are astonishingly versatile molecular species and radicals that are poised at the core of a sophisticated network of signaling pathways of plants and act as core regulator of cell physiology and cellular responses to environment. ROS are continuously generated in plants as an inevitable consequence of redox cascades of aerobic metabolism. In one hand, plants are surfeited with the mechanism to combat reactive oxygen species, in other circumstances, plants appear to purposefully generate (oxidative burst) and exploit ROS or ROS-induced secondary breakdown products for the regulation of almost every aspect of plant biology, from perception of environmental cues to gene expression. The molecular language associated with ROS-mediated signal transduction, leading to modulation in gene expression to be one of the specific early stress response in the acclamatory performance of the plant. They may even act as “second messenger” modulating the activities of spe...
The role of active oxygen species in plant signal transduction
Plant Science, 2001
Adequate responses to environmental changes are crucial for plant growth and survival. However, the molecular and biochemical mechanisms that orchestrate these responses are still poorly understood and the signaling networks involved remain elusive. A central role for active oxygen species (AOS) during biotic and abiotic stress responses is well-recognized, although under these situations AOS can either exacerbate damage or act as signal molecules that activate multiple defense responses. This duality can be obtained only when cellular levels of AOS are tightly controlled at both the production and consumption levels. This review focuses on the involvement of AOS in stress signal transduction in plants, guided by a summary of work performed in our laboratory on plants that are deficient in catalase activity. These plants not only reveal the importance of catalase in coping with environmental stresses, but also provide a powerful in planta model system to study the multiple roles of hydrogen peroxide during plant stress.
The oxidative burst, during which large quantities of reactive oxygen species (ROS) like superoxide, hydrogen peroxide, hydroxyl radicals, peroxy radicals, alkoxy radicals, singlet oxygen, etc. are generated, is one of the earliest responses of plant cells under various abiotic and biotic stresses and natural course of senescence. In fact, reactions involving ROS are an inherent feature of plant cells and contribute to a process of oxidative deterioration that may lead ultimately to cell death. Sources of ROS include leakage of electrons from electron transport systems, decompartmentalization of iron which facilitates generation of highly reactive hydroxyl radicals, and also various biological reactions. The imposition of both abiotic and biotic stresses causes overproduction of ROS, which ultimately imposes a secondary oxidative stress in plant cells. Degradation of membrane lipids, resulting in free fatty acids, initiates oxidative deterioration by providing a substrate for enzyme lipoxygenase, causing membrane lipid peroxidation. Since lipid peroxidation is known to produce alkoxy, peroxy radicals as well as singlet oxygen, these reactions in the membrane are a major source of ROS in plant cells. Regulatory mechanisms function both at gene and protein level to coordinate antioxidant responses. Superimposed upon our understanding of ROS-induced oxidative damages and their protection by antioxidative system, is the newly discovered role of ROS in signalling processes. ROS like H 2 O 2 act as a signalling molecule, second messenger, mediating the acquisition of tolerance to both biotic and abiotic stresses. ROS as ubiquitous messengers of stress responses likely play a signalling role in various adaptive processes. Plants can sense, transduce and translate ROS signal into appropriate cellular responses with the help of some redox-sensitive proteins. Hydrogen peroxide has been implicated as a key factor mediating programmed cell death. Plants exposed to abiotic stresses can produce a systemic signal, a component of which may be H 2 O 2 which sets up an acclimatary response in unstressed regions of plants. ROS is also found to communicate with other signal molecules and the pathways forming part of signalling network that controls responses downstream of ROS.
Plant Signaling: Response to Reactive Oxygen Species
Plant signaling: Understanding the molecular crosstalk, 2013
It is noteworthy to mention how the last 20 years have modified the concept of signalling in plants, especially the molecular crosstalk associated with it. Plants have the ability to show remarkable developmental plasticity to sustain in a continually changing environment. In response to various environmental stresses such as drought, salinity, metal toxicity, temperature and pathogens, plants defend themselves by developing some special defence mechanisms. Plants recognise these environmental signals with the help of some membrane protein sensors and then transduce these signals to the nucleus which ultimately stimulates various transcription factors and genes to form the product that ultimately leads to plant adaptation and assists the plant to sustain and surpass the adverse conditions. Amongst the environmental factors which are involved in signalling is the reactive oxygen species (ROS) generated during cell metabolism. ROS are spontaneously produced in the cell enzymatically through the action of various soluble membrane-bound enzymes and nonenzymatically by autoxidation reactions. Some of these ROS (e.g. superoxide dismutase, hydrogen peroxide and nitric oxide) are physiologically useful and in fact necessary for life but can also be harmful if present in excess or in inappropriate amounts. Current research in this regard focuses more on the development of transgenic plants with enhanced tolerance to ROS by using genetic approaches and analytical techniques. In particular nitric oxide (NO), a reactive radical, may be involved in the defence mediated by the ROS such as defence gene activation, hypersensitive response cell death and phytoalexin biosynthesis. By using biotechnological approaches NO together with ROS activates a stronger response and tolerance to various stresses in plants.
Current Science, 2005
The oxidative burst, during which large quantities of reactive oxygen species (ROS) like superoxide, hydrogen peroxide, hydroxyl radicals, peroxy radicals, alkoxy radicals, singlet oxygen, etc. are generated, is one of the earliest responses of plant cells under various abiotic and biotic stresses and natural course of senescence. In fact, reactions involving ROS are an inherent feature of plant cells and contribute to a process of oxidative deterioration that may lead ultimately to cell death. Sources of ROS include leakage of electrons from electron transport systems, decompartmentalization of iron which facilitates generation of highly reactive hydroxyl radicals, and also various biological reactions. The imposition of both abiotic and biotic stresses causes overproduction of ROS, which ultimately imposes a secondary oxidative stress in plant cells. Degradation of membrane lipids, resulting in free fatty acids, initiates oxidative deterioration by providing a substrate for enzyme lipoxygenase, causing membrane lipid peroxidation. Since lipid peroxidation is known to produce alkoxy, peroxy radicals as well as singlet oxygen, these reactions in the membrane are a major source of ROS in plant cells. Regulatory mechanisms function both at gene and protein level to coordinate antioxidant responses. Superimposed upon our understanding of ROS-induced oxidative damages and their protection by antioxidative system, is the newly discovered role of ROS in signalling processes. ROS like H 2 O 2 act as a signalling molecule, second messenger, mediating the acquisition of tolerance to both biotic and abiotic stresses. ROS as ubiquitous messengers of stress responses likely play a signalling role in various adaptive processes. Plants can sense, transduce and translate ROS signal into appropriate cellular responses with the help of some redox-sensitive proteins. Hydrogen peroxide has been implicated as a key factor mediating programmed cell death. Plants exposed to abiotic stresses can produce a systemic signal, a component of which may be H 2 O 2 which sets up an acclimatary response in unstressed regions of plants. ROS is also found to communicate with other signal molecules and the pathways forming part of signalling network that controls responses downstream of ROS.
Reactive oxygen species generation and signaling in plants
Plant Signaling & Behavior, 2012
The introduction of molecular oxygen into the atmosphere was accompanied by the generation of reactive oxygen species (ROS) as side products of many biochemical reactions. ROS are permanently generated in plastids, peroxisomes, mitochiondria, the cytosol and the apoplast. Imbalance between ROS generation and safe detoxification generates oxidative stress and the accumulating ROS are harmful for the plants. On the other hand, specific ROS function as signaling molecules and activate signal transduction processes in response to various stresses. Here, we summarize the generation of ROS in the different cellular compartments and the signaling processes which are induced by ROS.
The Plant Cell, 2013
Being sessile organisms, plants evolved sophisticated acclimation mechanisms to cope with abiotic challenges in their environment. These are activated at the initial site of exposure to stress, as well as in systemic tissues that have not been subjected to stress (termed systemic acquired acclimation [SAA]). Although SAA is thought to play a key role in plant survival during stress, little is known about the signaling mechanisms underlying it. Here, we report that SAA in plants requires at least two different signals: an autopropagating wave of reactive oxygen species (ROS) that rapidly spreads from the initial site of exposure to the entire plant and a stress-specific signal that conveys abiotic stress specificity. We further demonstrate that SAA is stress specific and that a temporal–spatial interaction between ROS and abscisic acid regulates rapid SAA to heat stress in plants. In addition, we demonstrate that the rapid ROS signal is associated with the propagation of electric sig...