The AirSR two-component system contributes to Staphylococcus aureus survival in human blood and transcriptionally regulates sspABC operon (original) (raw)

The importance of regulatory RNAs in Staphylococcus aureus

Infection, Genetics and Evolution, 2014

RNA molecules with regulatory functions in pathogenic bacteria have benefited from a renewed interest these two last decades. In Staphylococcus aureus, recent genome-wide approaches have led to the discovery that almost 10-20% of genes code for RNAs with critical regulatory roles in adaptive processes. These RNAs include transacting RNAs, which mostly act through binding to target mRNAs, and cis-acting RNAs, which include regulatory regions of mRNAs responding to various metabolic signals. Besides recent analysis of S. aureus transcriptome has revealed an unprecedented existence of pervasive transcription generating a high number of weakly expressed antisense RNAs along the genome as well as numerous mRNAs with overlapped regions. Here, we will illustrate the diversity of transacting RNAs and illustrate how they are integrated into complex regulatory circuits, which link metabolism, stress response and virulence.

Regulated Antisense RNA Eliminates Alpha-Toxin Virulence in Staphylococcus aureus Infection

1999

The ability to selectively disrupt gene function remains a critical element in elucidating information regarding gene essentiality for bacterial growth and/or pathogenesis. In this study, we adapted a tet regulatory expression system for use in Staphylococcus aureus, with the goal of downregulating gene expression via induction of antisense RNA. We demonstrate that this system exhibits a 50-to 100-fold dose-dependent level of induction in bacterial cells grown in culture (i.e., in vitro) and also functions in mice (i.e., in vivo) following oral administration of inducer. To determine whether induced antisense RNA could interfere with chromosomally derived gene expression, we cloned a fragment of the S. aureus alpha-toxin gene (hla) in antisense orientation downstream of the tet promoter system and introduced the construct into S. aureus. Induced antisense hla RNA downregulated chromosomally derived hla gene expression in vitro approximately 14-fold. Similarly, induction of hla antisense RNA in vivo dramatically reduced alpha-toxin expression in two different murine models of S. aureus infection. Most importantly, this reduction completely eliminated the lethality of the infection. These results indicate that the tet regulatory system functions efficiently in S. aureus and induced antisense RNA can effectively downregulate chromosomal gene expression both in vitro and in vivo.

Staphylococcus aureus Transcriptome Architecture: From Laboratory to Infection-Mimicking Conditions

PLOS Genetics, 2016

Staphylococcus aureus is a major pathogen that colonizes about 20% of the human population. Intriguingly, this Gram-positive bacterium can survive and thrive under a wide range of different conditions, both inside and outside the human body. Here, we investigated the transcriptional adaptation of S. aureus HG001, a derivative of strain NCTC 8325, across experimental conditions ranging from optimal growth in vitro to intracellular growth in host cells. These data establish an extensive repertoire of transcription units and non-coding RNAs, a classification of 1412 promoters according to their dependence on the RNA polymerase sigma factors SigA or SigB, and allow identification of new potential targets for several known transcription factors. In particular, this study revealed a relatively low abundance of antisense RNAs in S. aureus, where they overlap only 6% of the coding genes, and only 19 antisense RNAs not co-transcribed with other genes were found. Promoter analysis and comparison with Bacillus subtilis links the small number of antisense RNAs to a less profound impact of alternative sigma factors in S. aureus. Furthermore, we revealed that Rho-dependent transcription termination suppresses pervasive antisense transcription, presumably originating from abundant spurious transcription initiation in this A +T-rich genome, which would otherwise affect expression of the overlapped genes. In summary, our study provides genome-wide information on transcriptional regulation and noncoding RNAs in S. aureus as well as new insights into the biological function of Rho and the implications of spurious transcription in bacteria.

Revealing 29 sets of independently modulated genes in Staphylococcus aureus, their regulators and role in key physiological responses

2020

The ability of Staphylococcus aureus to infect many different tissue sites is enabled, in part, by its Transcriptional Regulatory Network (TRN) that coordinates its gene expression to respond to different environments. We elucidated the organization and activity of this TRN by applying Independent Component Analysis (ICA) to a compendium of 108 RNAseq expression profiles from two S. aureus clinical strains (TCH1516 and LAC). ICA decomposed the S. aureus transcriptome into 29 independently modulated sets of genes (i-modulons) that revealed (1) high confidence associations between 21 i-modulons and known regulators; (2) an association between an i-modulon and σS, whose regulatory role was previously undefined; (3) the regulatory organization of 65 virulence factors in the form of three i-modulons associated with AgrR, SaeR and Vim-3, (4) the roles of three key transcription factors (codY, Fur and ccpA) in coordinating the metabolic and regulatory networks; and (5) a low dimensional re...

Characterization of SSR42, a Novel Virulence Factor Regulatory RNA That Contributes to the Pathogenesis of a Staphylococcus aureus USA300 Representative

Journal of Bacteriology, 2012

Staphylococcus aureus is a major human pathogen that is capable of producing an expansive repertoire of cell surface-associated and extracellular virulence factors. Herein we describe an S. aureus regulatory RNA, SSR42, which modulates the expression of approximately 80 mRNA species, including several virulence factors, in S. aureus strains UAMS-1 and USA300 (LAC) during stationary-phase growth. Mutagenesis studies revealed that SSR42 codes for an 891-nucleotide RNA molecule and that the molecule's regulatory effects are mediated by the full-length transcript. Western blotting and functional assays indicated that the regulatory effects of SSR42 correlate with biologically significant changes in corresponding protein abundances. Further, in S. aureus strain LAC, SSR42 is required for wild-type levels of erythrocyte lysis, resistance to human polymorphonuclear leukocyte killing, and pathogenesis in a murine model of skin and soft tissue infection. Taken together, our results indic...

Direct Quantitative Transcript Analysis of the agr Regulon of Staphylococcus aureus during Human Infection in Comparison to the Expression Profile In Vitro

Infection and Immunity, 2000

Bacteria possess a repertoire of distinct regulatory systems promoting survival in disparate environments. Under in vitro conditions it was demonstrated for the human pathogen Staphylococcus aureus that the expression of most virulence factors is coordinated by the global regulator agr. To monitor bacterial gene regulation in the host, we developed a method for direct transcript analysis from clinical specimens. Quantification of specific transcripts was performed by competitive reverse transcription-PCR, and results were normalized against the constitutively expressed gene for gyrase (gyr). Using sputum from cystic fibrosis (CF) patients infected with S. aureus we examined the transcription of the effector molecule RNAIII of agr, of spa (protein A), generally repressed by agr, and of hla (alpha-toxin), generally activated by agr. In the CF lung RNAIII was expressed poorly, indicating an inactive agr in vivo. Despite the low level of RNAIII expression, spa was detectable only in minute amounts and an irregular transcription of hla was observed in all sputum samples. After subculturing of patient strains agr-deficient isolates and isolates with unusual expression profiles, i.e., not consistent with those obtained from prototypic strains, were observed. In conclusion, the agr activity seems to be nonessential in CF, and from the described expression pattern of spa and hla, other regulatory circuits aside from agr are postulated in vivo.

Molecular Architecture of the Regulatory Locus sae of Staphylococcus aureus and Its Impact on Expression of Virulence Factors

Journal of Bacteriology, 2003

We characterized the sae operon, a global regulator for virulence gene expression in Staphylococcus aureus. A Tn917 sae mutant was obtained by screening a Tn917 library of the agr mutant ISP479Mu for clones with altered hemolytic activity. Sequence analysis of the sae operon revealed two additional open reading frames (ORFs) (ORF3 and ORF4) upstream of the two-component regulatory genes saeR and saeS. Four overlapping sae-specific transcripts (T1 to T4) were detected by Northern blot analysis, and the transcriptional initiation points were mapped by primer extension analysis. The T1, T2, and T3 mRNAs are probably terminated at the same stem-loop sequence downstream of saeS. The T1 message (3.1 kb) initiates upstream of ORF4, T2 (2.4 kb) initiates upstream of ORF3, and T3 (2.0 kb) initiates in front of saeR. T4 (0.7 kb) represents a monocistronic mRNA encompassing ORF4 only. sae-specific transcripts were detectable in all of the 40 different clinical S. aureus isolates investigated. Transcript levels were at maximum during the post-exponential growth phase. The sae mutant showed a significantly reduced rate of invasion of human endothelial cells, consistent with diminished transcription and expression of fnbA. The expression of type 5 capsular polysaccharide is activated in the sae mutant of strain Newman, as shown by immunofluorescence and promoter-reporter fusion experiments. In summary, the sae operon constitutes a four-component regulator system which acts on virulence gene expression in S. aureus.

A Non-Coding RNA Promotes Bacterial Persistence and Decreases Virulence by Regulating a Regulator in Staphylococcus aureus

PLoS Pathogens, 2014

Staphylococcus aureus produces a high number of RNAs for which the functions are poorly understood. Several non-coding RNAs carry a C-rich sequence suggesting that they regulate mRNAs at the post-transcriptional level. We demonstrate that the Sigma B-dependent RsaA RNA represses the synthesis of the global transcriptional regulator MgrA by forming an imperfect duplex with the Shine and Dalgarno sequence and a loop-loop interaction within the coding region of the target mRNA. These two recognition sites are required for translation repression. Consequently, RsaA causes enhanced production of biofilm and a decreased synthesis of capsule formation in several strain backgrounds. These phenotypes led to a decreased protection of S. aureus against opsonophagocytic killing by polymorphonuclear leukocytes compared to the mutant strains lacking RsaA. Mice animal models showed that RsaA attenuates the severity of acute systemic infections and enhances chronic catheter infection. RsaA takes part in a regulatory network that contributes to the complex interactions of S. aureus with the host immune system to moderate invasiveness and favour chronic infections. It is the first example of a conserved small RNA in S. aureus functioning as a virulence suppressor of acute infections. Because S. aureus is essentially a human commensal, we propose that RsaA has been positively selected through evolution to support commensalism and saprophytic interactions with the host.

The Staphylococcus-Specific Gene rsr Represses agr and Virulence in Staphylococcus aureus

Infection and Immunity, 2010

The expression of virulence factors in Staphylococcus aureus is tightly coordinated by a vast network of regulatory molecules. In this report, we characterize a genetic locus unique to staphylococci called rsr that has a role in repressing two key virulence regulators, sarR and agr. Using strain SH1000, we showed that the transcription of virulence effectors, such as hla, sspA, and spa, is altered in an rsr mutant in a way consistent with agr upregulation. Analysis of RNAIII expression of the agr locus in rsr and rsr-sarR mutants indicated that rsr likely contributes to agr expression independently of SarR. We also provide evidence using a murine model of S. aureus skin infection that the effects mediated by rsr reduce disease progression.

Natural mutations in aStaphylococcus aureusvirulence regulator attenuate cytotoxicity but permit bacteremia and abscess formation

Proceedings of the National Academy of Sciences, 2016

Staphylococcus aureus is a major bacterial pathogen, which causes severe blood and tissue infections that frequently emerge by autoinfection with asymptomatically carried nose and skin populations. However, recent studies report that bloodstream isolates differ systematically from those found in the nose and skin, exhibiting reduced toxicity toward leukocytes. In two patients, an attenuated toxicity bloodstream infection evolved from an asymptomatically carried high-toxicity nasal strain by loss-of-function mutations in the gene encoding the transcription factor repressor of surface proteins (rsp). Here, we report that rsp knockout mutants lead to global transcriptional and proteomic reprofiling, and they exhibit the greatest signal in a genome-wide screen for genes influencing S. aureus survival in human cells. This effect is likely to be mediated in part via SSR42, a long-noncoding RNA. We show that rsp controls SSR42 expression, is induced by hydrogen peroxide, and is required fo...