Efficiency Enhancement of Fin Tube Heat Exchanger Using New Winglet Vortex Generator (original) (raw)

Experimental Study of Heat Transfer Enhancement in Fin Tube Heat Exchanger by Vortex Generator-A Review.

International Journal of Engineering Sciences & Research Technology, 2014

This review paper presents the work of various researchers on the heat transfer enhancement of fin tube heat exchanger. In this research author used different type of vortex generator like delta winglet, rectangular winglet, curved trapezoidal winglet pair. The vortex generator can be embedded in the plate fin and that too in a low cost with effect the original design and setup of the commonly used heat exchangers. The various design modifications which are implemented and studied numerically and experimentally is been discussed in the paper

Analysis of heat transfer and pressure drop for fin-and-tube heat exchangers with rectangular winglet-type vortex generators

Applied Thermal Engineering, 2013

In present work, heat transfer enhancement and pressure loss penalty for fin-and-tube heat exchangers with rectangular winglet pairs (RWPs) were numerically investigated in a relatively low Reynolds number flow. The purpose of this study was to explore the fundamental mechanism between the local flow structure and the heat transfer augmentation. The RWPs were placed with a special orientation for the purpose of enhancement of heat transfer. The numerical study involved three-dimensional flow and conjugate heat transfer in the computational domain, which was set up to model the entire flow channel in the air flow direction. The effects of attack angle of RWPs, row-number of RWPs and placement of RWPs on the heat transfer characteristics and flow structure were examined in detail. It was observed that the longitudinal vortices caused by RWPs and the impingement of RWPs-directed flow on the downstream tube were important reasons of heat transfer enhancement for fin-and-tube heat exchangers with RWPs. It was interesting to find that the pressure loss penalty of the fin-and-tube heat exchangers with RWPs can be reduced by altering the placement of the same number of RWPs from inline array to staggered array without reducing the heat transfer enhancement. The results showed that the rectangular winglet pairs (RWPs) can significantly improve the heat transfer performance of the finand-tube heat exchangers with a moderate pressure loss penalty.

Computer-aided engineering analysis for the performance augmentation of a fin-tube heat exchanger using vortex generator

Concurrent Engineering, 2019

The heat transfer performance of fin-tube heat exchangers can be enhanced with the help of longitudinal vortex generators. In this work, we investigate the effect of employing a rectangular winglet having a punched hole on heat transfer and flow resistance characteristics in a fin-tube heat exchanger with the help of numerical simulations. Studies were performed on two configurations, namely, common flow down and common flow up at upstream and downstream locations. Performance characteristics such as Colburn’s factor ( j), friction factor ( f), and performance evaluation criterion were considered for evaluating the thermohydraulic performance. Investigations were performed considering Reynolds number in the range of 1500–9000, keeping the angle of attack as 45°. The shear stress transport k-ω turbulence model was used for performing numerical simulations. A significant augmentation of up to 71% in the thermohydraulic performance of fin-tube heat exchanger was observed with the commo...

CFD analysis of fin tube heat exchanger with a pair of delta winglet vortex generators

Among tubular heat exchangers, fin-tube types are the most widely used in refrigeration and air-conditioning equipment. Efforts to enhance the performance of these heat exchangers included variations in the fin shape from a plain fin to a slit and louver type. In the context of heat transfer augmentation, the performance of vortex generators has also been investigated. Delta winglet vortex generators have recently attracted research interest, partly due to experimental data showing that their addition to fin-tube heat exchangers considerably reduces pressure loss at heat transfer capacity of nearly the same level. The efficiency of the delta winglet vortex generators widely varies depending on their size and shape, as well as the locations where they are implemented. In this paper, the flow field around delta winglet vortex generators in a common flow up arrangement was analyzed in terms of flow characteristics and heat transfer using computational fluid dynamics methods. Flow mixing due to vortices and delayed separation due to acceleration influence the overall fin performance. The fin with delta winglet vortex generators exhibited a pressure loss lower than that of a plain fin, and the heat transfer performance was enhanced at high air velocity or Reynolds number.

3D Simulative Investigation of Heat Transfer Enhancement Using Three Vortex Generator Types Surrounding Tube in Plate Fin Heat Exchanger

E3S Web of Conferences, 2019

Vortex generator is a method to enhancing of heat exchanger performance but still have some disadvantages when the heat transfer performance increase. One of the disadvantage using vortex generator is high pressure drop. This investigation will be compared three type vortex generators to result the overall performance of heat transfer around tube in plate fin heat exchanger. The three types of vortex generator to investigate are rectangular winglet type, delta winglet type, and trapezoidal winglet type in laminar flow. The result showed that using the kind of trapezoidal winglet pair type in the plate fin and tube heat exchanger consist of six rows of round tube with two neighboring fins form a channel better performance than two types vortex generators such as rectangular winglet type and delta winglet type. The heat transfer coefficient when use trapezoidal winglet type was increased almost same with rectangular winglet type and pressure drop was decreased more than delta winglet type.

Numerical investigation of conjugate heat transfer and flow performance of a fin and tube heat exchanger with vortex generators

2017

Vortex generator is considered as an effective device for augmentation of the thermal-hydraulic performance of a heat exchanger. The aim of present study is to examine the influence of vortex generators on a double fin and tube heat exchanger performance. Vortex generator of rectangular winglet type is chosen and investigated at different angles of attack 0◦, −10◦ and −20◦ with the flow direction. Three-dimensional numerical model is developed and simulations are performed for a Reynolds number range 5000 ≤ Re ≤ 11000 taking conjugate heat transfer into account. The heat transfer and pressure loss characteristics are determined and analyzed for an in-line configuration of a fin and tube heat exchanger. In order to evaluate the enhancement in the performance on an equitable basis, the heat exchanger with plain fin surface is considered as a reference design. Results show that the angle of attack of a vortex generator has a significant impact on the volume goodness factor, and enhance...

Heat Transfer Performance of a Fin and Ovaltube Heat Exchanger with Delta Winglet Vortex Generators

In this thesis, thermal performance assessments, flow configurations and heat transfer characteristics in a fin-and-oval-tube heat exchanger with the delta winglet vortex generators are investigated analytically and compared with that of original model. Delta winglet vortex generators like V-ribs are placed on fin surfaces. The effects of varying Reynolds numbers on heat transfer, heat transfer coefficient and thermal performance are determined. The velocities for the input of CFD analysis are calculated from Reynolds number. 3D modeling of the fin-and-oval-tube heat exchanger without and with the delta winglet vortex generators is done in Creo 2.0. CFD and thermal analysis are done in Ansys. The heat transfer coefficient which is used as input for thermal analysis is taken from the results of CFD analysis.

Numerical investigation on the performance of fin and tube heat exchangers using rectangular vortex generators

In the present work, a 3-D numerical investigation has been performed to explore the effect of attack angles on the thermal-hydraulic performance of fin and tube heat exchanger (FTHE) using rectangular winglet pairs (RWPs). RWPs are placed adjacent to the tubes and three attack angels are considered for the study i.e. 5°, 15° and 25°. The effect of attack angles are examined on the heat transfer characteristics as well as in pressure drop penalty with airside Reynolds number Rea ranges from 500 to 900. Two performance evaluation criteria namely PEC1 i.e. area goodness factor (j/f) and PEC2 i.e. heat transfer rate per unit fan power consumption (Q/Pf) are considered for the performance evaluation. Furthermore, MOORA method is applied to obtain the performance order of FTHE configurations by taking PEC1 and PEC2 as beneficial attributes and fan power Pf as a non-beneficial attribute, keeping equal importance to each attribute. The results show that 5° attack angle provides the better performance in terms of PEC1 as heat transfer coefficient is increased by 27.70% at Rea=500 and 32.73% at Rea=900 respectively with 13.01% increased pressure drop penalty at Rea=500 and 14.26% at Rea=900 respectively. In terms of PEC2, though the 5° attack angle provides the high values of Q/Pf factor among the 15° and 25° attack angles, but it is found insignificant to replace the baseline configuration i.e. plain fin and tube heat exchanger configuration without vortex generators. Moreover, in MOORA optimization analysis also, it is found that 5° attack angle provides the better thermal-hydraulic performance.

Thermo-hydraulic Characterization of the Smooth Wavy Fin-and-elliptical Tube Heat Exchangers Using New Type Vortex Generators

Energy Procedia, 2014

In the present study, 3D computational analysis was performed to investigate heat transfer and pressure drop characteristics of flow in new Smooth Wavy Fin-and-Elliptical Tube (SWFET) heat exchanger model with new vortex generators. Performance results are presented in terms of non-dimensional parameters, friction factor f and Colburn j factor. Four new types of vortex generators were considered; rectangular trapezoidal winglet (RTW), angle rectangular winglet (ARW), curved angle rectangular winglet (CARW) and Wheeler wishbone (WW). Fluid flow and heat transfer are simulated and the results are compared. The SST k ω − turbulence model is used, with steady-state solvers to calculate pressure drop, flow and temperature fields. The influences of the geometrical factors of mounted vortex generators including attack angles of the winglets (15 ,30 , 45 ,60 VG α = and 75°) and width/length aspect ratio (0.5,1.0 w l =) of the Wheeler wishbones in enhancing the heat transfer performance of a smooth wavy fin heat exchanger with a three-row staggered elliptical tube bundle are investigated. The Reynolds number ranges from 500 to 3000 based on the hydraulic diameter. A parametric study on the winglet vortex generators indicated that for the small attack angle, CARW vortex generators gives better thermohydraulic performance under the present conditions.