A mathematical model for red cell motion in narrow capillary surrounded by tissue (original) (raw)

Abstract

Microcirculation is common to every organ and nurtures various tissues by providing oxygen and nutrients and removing waste products. Hence, the physiology of the microcirculation has profound impact on transport phenomena and nutrient exchange and consequently on ...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (24)

  1. A.C. Barnard, L. Lopez, J.D. Hellums, Basic theory of blood flow in capillaries, Microvasc. Res. 1 (1968) 23-24.
  2. F.P. Bretherton, The motion of long bubbles in tubes, J. Fluid Mech. 10 (1961) 166-188.
  3. A. Cameron, The Principle of Lubrication, Willey, New York, 1966.
  4. J. Feng, S. Weinbaum, Lubrication theory in highly compressible porous media: the mechanics of skiing from red blood cell to humans, J. Fluid Mech. 422 (2000) 281-317.
  5. J.M. Fitzgerald, Mechanics of red cell motion through very narrow capillaries, Proc. Roy. Soc. Lond. B 174 (1969) 193-227.
  6. J.M. Fitzgerald, Implication of a theory of erythrocyte motion in narrow capillaries, J. Appl. Physiol. 27 (1969) 912-918.
  7. Y.C. Fung, Blood flow in the capillary bed, J. Biomech. 2 (1969) 353-372.
  8. H.L. Goldsmith, S.G. Mason, The movement of single large bubble in closed vertical tubes, J. Fluid Mech. 14 (1962) 42-58.
  9. B.B. Gupta, Analysis of human blood flow through narrow tubes, Ph.D. Thesis, I.I.T. Delhi, 1976.
  10. R. Hsu, T.W. Secomb, Motion of non-axisymmetric red blood cells in cylindrical capillaries, J. Biomech. Eng. 111 (1989) 147-151.
  11. M.J. Lighthill, Pressure forcing of tightly fitting pellets along fluid filled elastic tubes, J. Fluid Mech. 34 (1968) 113-143.
  12. K.L. Lin, L. Lopez, J.D. Hellums, Blood flow in capillaries, Microvasc. Res. 5 (1973) 7-19.
  13. A.R. Pries, T.W. Secomb, T. Gessner, M.B. Sperandio, J.F. Gross, P. Gaehtgens, Resistance to blood flow in microvessels in vivo, Circ. Res. 75 (1994) 904-915.
  14. J. Prothero, A.C. Burton, The physics of blood flow in capillaries: I. The nature of the motion, Biophys. J. 1 (1961) 565-579;
  15. J. Prothero, A.C. Burton, The physics of blood flow in capillaries: II. The capillary resistance to flow, Biophys. J. 2 (1962) 199-212.
  16. T.W. Secomb, Flow-dependent rheological properties of blood in capillaries, Microvasc. Res. 34 (1987) 46-58.
  17. T.W. Secomb, R. Hsu, A.R. Pries, A model for red blood cell motion in glycocalyx-lined capillaries, Am. J. Physiol. Heart Circ. Physiol. 274 (1998) H 1016-H 1022.
  18. T.W. Secomb, R. Hsu, A.R. Pries, Motion of red blood cell in a capillary with an endothelial surface layer: effect of flow velocity, Am. J. Physiol. Heart Circ. Physiol. 28 (2001) H 629-H 636.
  19. T.W. Secomb, R. Skalak, N. Ozkaya, J.F. Gross, Flow of axisymmetric red blood cells in narrow capillaries, J. Fluid Mech. 163 (1986) 405-423.
  20. T.W. Secomb, A.R. Pries, Blood flow and red blood cell deformation in non-uniform capillaries: effect of endothelial surface layer, Microcirculation 9 (2002) 189-196.
  21. R. Skalak, in: Y.C. Fung et al. (Eds.), Mechanics of Microcircular, Biomechanics. Its Foundation and Objectives, Prentice Hall, NJ, 1972, pp. 457-469.
  22. P.N. Tandon, M. Mishra, A. Chaurasia, A model for the nutritional transport in capillary-tissue exchange system, Int. J. BioMed. Comput. 37 (1994) 19-28.
  23. W. Wang, K.H. Parker, The effect of deformable porous layer on the motion of a sphere in a narrow cylindrical tube, J. Fluid Mech. 283 (1995) 287-305.
  24. P.R. Zarda, S. Chien, R. Skalak, Interaction of viscous incompressible fluid with an elastic body, in: T. Belystschko, T.L. Geers (Eds.), Computational Methods for Fluid-Solid Interaction Problems, American Society of Mechanical Engineers, New York, 1977, pp. 65-82.