RF Superconducting Quantum Interference Device Metamaterials (original) (raw)
Related papers
Physics Reports, 2018
Metamaterials, i.e. artificial, man-made media designed to achieve properties not available in natural materials, have been the focus of intense research during the last two decades. Many properties have been discovered and multiple designs have been devised that lead to multiple conceptual and practical applications. Superconducting metamaterials made of superconducting metals have the advantage of ultra low losses, a highly desirable feature. The additional use of the celebrated Josephson effect and SQUID (superconducting quantum interference device) configurations enrich the domain of superconducting metamaterials and produce further specificity and functionality. SQUID-based metamaterials are both theoretically investigated but also fabricated and analyzed experimentally in many laboratories and exciting new phenomena have been found both in the classical and quantum realms. The enticing feature of a SQUID is that it is a unique nonlinear oscillator that can be actually manipulated through multiple external means. This domain flexibility is inherited to SQUID-based metamaterials and metasurfaces, i.e. extended units that contain a large arrangement of SQUIDs in various interaction configurations. Such a unit can be viewed theoretically as an assembly of weakly coupled nonlinear oscillators and as such presents a nonlinear dynamics laboratory where numerous, classical as well as quantum complex, spatio-temporal phenomena may be explored. In this review we focus primarily on SQUID-based superconducting metamaterials and present basic properties related to their individual and collective responses to external drives; the work summarized here is primarily theoretical and computational with nevertheless explicit presentation of recent experimental works. We start by showing how a SQUID-based system acts as a genuine metamaterial with right as well as left handed properties, demonstrate that the intrinsic Josephson nonlinearity leads to wide-band tunability, intrinsic nonlinear as well as flat band localization. We explore further exciting properties such as multistability and self-organization and the emergence of counter-intuitive chimera states of selective, partial organization. We then dwell into the truly quantum regime and explore the interaction of electromagnetic pulses with superconducting qubit units where the coupling between the two yields phenomena such as self-induced transparency and superradiance. We thus attempt to present the rich behavior of coupled superconducting units and point to their basic properties and practical utility.
Electrically and magnetically resonant dc-SQUID metamaterials
Applied Physics A, 2016
We propose a superconducting metamaterial design consisting of meta-atoms (MAs) which are each composed of a direct current (dc) superconducting quantum interference device (SQUID) and a superconducting rod. This design provides negative refraction index behavior for a wide range of structure parameters.
Transmission based characterisation of superconducting metamaterial
APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2021), 2021
Waveguides with superconducting Josephson junction-based metamaterial are widely used as parametric amplifiers. However, the precise estimation of power entering the device is crucial for the estimation of gain and noise temperature. This is nontrivial when the measurement tract is not symmetrical. We present a basic framework for the analysis of properties of such nonlinear systems and calibration of the input power. Utilizing measurements with varied temperature and power of the input signal, we estimate additional attenuation of the input line. We demonstrate a precise calibration procedure of a Josephson junction metamaterial.
Negative Refraction in Ferromagnet-Superconductor Superlattices
Physical Review Letters, 2005
Negative refraction, which reverses many fundamental aspects of classical optics, can be obtained in systems with negative magnetic permeability and negative dielectric permittivity. This Letter documents an experimental realization of negative refraction at millimeter waves, finite magnetic fields and cryogenic temperatures utilizing a multilayer stack of ferromagnetic and superconducting thin films. In the present case the superconducting YBa2Cu3O7 layers provide negative permittivity while negative permeability is achieved via ferromagnetic (La:Sr)MnO3 layers for frequencies and magnetic fields close to the ferromagnetic resonance. In these superlattices the refractive index can be switched between positive and negative regions using external magnetic field as tuning parameter.
Mode Structure in Superconducting Metamaterial Transmission Line Resonators
Superconducting metamaterials are a promising resource for quantum information science. In the context of circuit QED, they provide a means to engineer on-chip, novel dispersion relations and a band structure that could ultimately be utilized for generating complex entangled states of quantum circuitry, for quantum reservoir engineering, and as an element for quantum simulation architectures. Here we report on the development and measurement at millikelvin temperatures of a particular type of circuit metamaterial resonator composed of planar superconducting lumped-element reactances in the form of a discrete left-handed transmission line (LHTL) that is compatible with circuit QED architectures. We discuss the details of the design, fabrication, and circuit properties of this system. As well, we provide an extensive characterization of the dense mode spectrum in these metamaterial resonators, which we conducted using both microwave transmission measurements and laser scanning microscopy (LSM). Results are observed to be in good quantitative agreement with numerical simulations and also an analytical model based upon current-voltage relationships for a discrete transmission line. In particular, we demonstrate that the metamaterial mode frequencies, spatial profiles of current and charge densities, and damping due to external loading can be readily modeled and understood, making this system a promising tool for future use in quantum circuit applications and for studies of complex quantum systems.
Nonlinear, Tunable and Active Metamaterials
Springer Series in Materials Science, 2015
Advances in theory and nanofabrication techniques have opened new unprecedented opportunities for researchers to create artificially structured media with extraordinary properties that rely on particular geometric arrangements. A well-known paradigm is that of metamaterials that provide access to all quadrants of the real permittivity-permeability plane, exhibiting negative refraction index, optical magnetism, and other fascinating properties . Their unique properties are particularly well suited for novel devices like hyperlenses [5] and optical cloaks of invisibility [6], while they may form a material base for other functional devices with tuning and switching capabilities . The key element for the construction of metamaterials has customarily been the split-ring resonator (SRR), a subwavelength resonant "particle" which is effectively a kind of an artificial "magnetic atom" . A periodic arrangement of SRRs in space forms a magnetic metamaterial that exhibits high frequency magnetism and negative permeability . In several applications, real-time tunability of the effective parameters of a metamaterial is a desired property, that can be achieved by nonlinearity .
Nature Materials, 2008
Electromagnetic metamaterials 1 are a class of materials which have been artificially structured on a subwavelength scale. They are currently the focus of a great deal of interest because they allow access to previously unrealisable properties like a negative refractive index 2 . Most metamaterial designs have so far been based on resonant elements, like split rings 3 , and research has concentrated on microwave frequencies and above. In this work, we present the first experimental realisation of a non-resonant metamaterial designed to operate at zero frequency. Our samples are based on a recently-proposed template 4 for an anisotropic magnetic metamaterial consisting of an array of superconducting plates. Magnetometry experiments show a strong, adjustable diamagnetic response when a field is applied perpendicular to the plates. We have calculated the corresponding effective permeability, which agrees well with theoretical predictions. Applications for this metamaterial may include non-intrusive screening of weak DC magnetic fields. The first metamaterials 3,5 were designed to operate at microwave frequencies. Since then, while there has been some research on radio-frequency metamaterials 6 , most of the research effort has been focused on higher frequencies: technologically-important microwaves or visible light 7 . The low-frequency end of the spectrum has remained relatively unexplored. In addition, the majority of metamaterials devised to date consist of an arrangement of resonant components. There is a good reason for this: the response of a resonator varies greatly as a function of the frequency at which it is being driven. Close to the resonant frequency, the amplitude of the response can be very large, while the phase changes. The range of available values of the response function, or susceptibility, is therefore very wide. One of the crowning achievements of (and driving forces behind) metamaterials research is the realization of a negative refractive index 2,8 , and a simple argument shows that this cannot be achieved without relying on resonant structures. However, the price of working close to the resonant frequency is that losses and frequency dispersion are greatest here. When a negative response is not required then a non-resonant structure is advantageous. Another recent development means that there is new demand for metamaterials with nonnegative anisotropic parameters. Transformation optics 9 is a design paradigm that allows a new level of control over electromagnetic fields. For a given design, it provides a recipe for the material parameters as a function of position. The parameters generated in this way are always non-negative and anisotropic. A spectacular demonstration of the technique was provided by the construction of an electromagnetic cloak 10 using metamaterials. The interior of the cloak is shielded from microwaves with minimal disruption to the exterior fields.
Symmetry, 2011
The major issue regarding magnetic response in nature-"negative values for the permeability μ of material parameters, especially in terahertz or optical region" makes the electromagnetic properties of natural materials asymmetric. Recently, research in metamaterials has grown in significance because these artificial materials can demonstrate special and, indeed, extraordinary electromagnetic phenomena such as the inverse of Snell's law and novel applications. A critical topic in metamaterials is the artificial negative magnetic response, which can be designed in the higher frequency regime (from microwave to optical range). Artificial magnetism illustrates new physics and new applications, which have been demonstrated over the past few years. In this review, we present recent developments in research on artificial magnetic metamaterials including split-ring resonator structures, sandwich structures, and high permittivity-based dielectric composites. Engineering applications such as invisibility cloaking, negative refractive index medium, and slowing light fall into this category. We also discuss the possibility that metamaterials can be suitable for realizing new and exotic electromagnetic properties.
Wide-band tuneability, nonlinear transmission, and dynamic multistability in SQUID metamaterials
Applied Physics A
Superconducting metamaterials comprising rf Superconducting QUantum Interference Devices (SQUIDs) have been recently realized and investigated with respect to their tuneability, permeability, and dynamic multistability properties. These properties are a consequence of intrinsic nonlinearities due to the sensitivity of the superconducting state to external stimuli. SQUIDs, made of a superconducting ring interrupted by a Josephson junction, possess yet another source of nonlinearity, which makes them widely tuneable with an applied dc dlux. A model SQUID metamaterial, based on electric equivalent circuits, is used in the weak coupling approximation to demonstrate the dc flux tuneability, dynamic multistability, and nonlinear transmission in SQUID metamaterials comprising nonhysteretic SQUIDs. The model equations reproduce the experimentally observed tuneability patterns and predict tuneability with the power of an applied ac magnetic field. Moreover, the results indicate the opening of nonlinear frequency bands for energy transmission through SQUID metamaterials, for sufficiently strong ac fields.