Full course macro-kinematic analysis of a 10 km classical cross-country skiing competition (original) (raw)

Macro-Kinematic Differences Between Sprint and Distance Cross-Country Skiing Competitions Using the Classical Technique

Frontiers in Physiology, 2018

We compare the macro-kinematics of six elite female crosscountry skiers competing in 1.1-km Sprint and 10.5-km Distance classical technique events on consecutive days under similar weather and track conditions. The relative use of double pole (DP), kick-double pole (KDP), diagonal stride (DS), tucking (Tuck) and turning (Turn) sub-techniques, plus each technique's respective velocities, cycle lengths and cycle rates were monitored using a single micro-sensor unit worn by each skier during the Sprint qualification, semifinal and finals, and multiple laps of the Distance race. Over a 1.0-km section of track common to both Sprint and Distance events, the mean race velocity, cyclical sub-technique velocities, and cycle rates were higher during the Sprint race, while Tuck and Turn velocities were similar. Velocities with KDP and DS on the common terrain were higher in the Sprint (KDP +12%, DS +23%) due to faster cycle rates (KDP +8%, DS +11%) and longer cycle lengths (KDP +5%, DS +10...

Comparisons of Macro-Kinematic Strategies During the Rounds of a Cross-Country Skiing Sprint Competition in Classic Technique

Frontiers in Sports and Active Living, 2021

This study was designed to examine macro-kinematic parameters of six female cross-country skiers during the qualifying, semi-final and final rounds of a 1.1 km sprint competition in classical technique. During each round these skiers were monitored continuously with a single micro-sensor, and their cycle parameters and relative use of these two sub-techniques calculated. Within each round six sections of the course, during which all skiers employed either double pole (DP) or diagonal stride (DS) sub-technique, were chosen for additional analysis. The mean macro-kinematic cycle parameters and relative usage of sub-techniques over the full course did not differ significantly between rounds. On average 54% of the course was covered employing DP and 13% using DS, while 32% was covered utilizing a non-cyclical or irregular technique. With DP, the mean racing speed and cycle rate (CR) on the starting, middle and finishing sections of the course differed significantly, with no differences ...

Identification of Cross-Country Skiing Movement Patterns Using Micro-Sensors

Sensors, 2012

This study investigated the potential of micro-sensors for use in the identification of the main movement patterns used in cross-country skiing. Data were collected from four elite international and four Australian athletes in Europe and in Australia using a MinimaxX TM unit containing accelerometer, gyroscope and GPS sensors. Athletes performed four skating techniques and three classical techniques on snow at moderate velocity. Data from a single micro-sensor unit positioned in the centre of the upper back was sufficient to visually identify cyclical movement patterns for each technique. The general patterns for each technique were identified clearly across all athletes while at the same time distinctive characteristics for individual athletes were observed. Differences in speed, snow condition and gradient of terrain were not controlled in this study and these factors could have an effect on the data patterns. Development of algorithms to process the micro-sensor data into kinematic measurements would provide coaches and scientists with a valuable performance analysis tool. Further research is needed to develop such algorithms and to determine whether the patterns are consistent across a range of different speeds, snow conditions and terrain, and for skiers of differing ability.

Development of a Framework for the Investigation of Speed, Power, and Kinematic Patterns in Para Cross-Country Sit-Skiing: A Case Study of an LW12 Athlete

Frontiers in Sports and Active Living

Objective: To develop a framework for the investigation of speed, power, and kinematic patterns across varying terrain in crosscountry (XC) sit-skiing, and to test this framework in a XC sit-skier of the LW12 class during high-(HIT) and low-intensity (LIT) endurance training. Methods: One XC sit-skiing athlete of the LW12 class with a single above-the-knee amputation was equipped with a GNSS enabled sports watch with integrated barometry and heart rate monitoring (peak heart rate: 195 beats•min −1), and an inertial measurement unit. After a warm-up, he performed two 20-m maximal speed tests on a flat and an uphill section to determine maximal speed and power, followed by skiing 5.75 km at both LIT and HIT in varying terrain. Results: 51, 28, and 21% of the time during HIT and 53, 28, and 19% of the time during LIT were spent in uphill, flat and downhill terrain, respectively. Maximal speed in the uphill and flat section was 4.0 and 6.2 m•s −1 , respectively, and the corresponding maximal power output 342 and 252 W. The % of maximal speed did not differ between the uphill and the flat section (HIT: 66 vs. 67%, LIT: 47 vs. 50%), whereas the % of maximal power output was lower in the uphill than flat section (HIT: 65 and 80%, LIT: 46 and 58%). Still, the absolute power output was slightly higher in the uphill than the flat section (HIT: 222 vs. 201 W, LIT: 156 vs. 145 W). Furthermore, cycle rate was significantly higher during HIT than LIT (60-61 vs. 45-55 cycles•min −1 , across all terrains, all p < 0.03), while cycle length was longer in the uphill terrain (3.0 vs. 2.6 m, p < 0.001). Furthermore, the % of peak heart rate was significantly higher in HIT than LIT (90 vs. 78, 85 vs. 67, and 88 vs. 66%, respectively, in the uphill, flat and downhill terrain, all p < 0.001). Conclusions: Here, we present a new integrative framework for future investigations of performance, technical and physical demands in XC sit-skiing. In this case study, the Baumgart et al. Framework for Investigating Para XC Sit-Skiing increase in speed from LIT to HIT was due to increases in cycle rate in all terrains, while cycle length was less affected. Although the absolute power output was slightly higher in the uphill compared to the flat section both for HIT and LIT, the athlete worked closer to his maximum power output in the flat section.

Automatic Classification of Sub-Techniques in Classical Cross-Country Skiing Using a Machine Learning Algorithm on Micro-Sensor Data

Sensors (Basel, Switzerland), 2017

The automatic classification of sub-techniques in classical cross-country skiing provides unique possibilities for analyzing the biomechanical aspects of outdoor skiing. This is currently possible due to the miniaturization and flexibility of wearable inertial measurement units (IMUs) that allow researchers to bring the laboratory to the field. In this study, we aimed to optimize the accuracy of the automatic classification of classical cross-country skiing sub-techniques by using two IMUs attached to the skier's arm and chest together with a machine learning algorithm. The novelty of our approach is the reliable detection of individual cycles using a gyroscope on the skier's arm, while a neural network machine learning algorithm robustly classifies each cycle to a sub-technique using sensor data from an accelerometer on the chest. In this study, 24 datasets from 10 different participants were separated into the categories training-, validation- and test-data. Overall, we ac...

Impact of Incline, Sex and Level of Performance on Kinematics During a Distance Race in Classical Cross-Country Skiing

Journal of sports science & medicine, 2018

Here, female and male elite cross-country (XC) skiers were compared on varying terrain during an official 10-km (women) and 15-km (men) Norwegian championship race. On the basis of race performance, 82 skiers were classified as fast (FS) (20 women, 20 men) or slower (SS) (21, 21) skiers. All were video recorded on flat (0°), intermediate (3.5°), uphill (7.1°) and steep uphill (11°) terrain during the race at a distance of 0.8, 1.2, 2.1 and 7.1 km from the start, respectively. All skiers employed exclusively double-poling (DP) on the flat section and, except for the male winner, exclusively diagonal stride (DIA) on the uphill sections. On the intermediate section, more men than women utilized DP and fewer DIA (p = 0.001), with no difference in kick double-poling (DPK). More FS than SS utilized DPK and fewer DIA (p = 0.001), with similar usage of DP. Males skied with faster and longer cycles but lower cycle rate compared with females (p < 0.001), with largest absolute sex differenc...

Assessment of Basic Motions and Technique Identification in Classical Cross-Country Skiing

Frontiers in Psychology

Cross-country skiing is a popular Olympic winter sport, which is also used extensively as a recreational activity. While cross-country skiing primarily is regarded as a demanding endurance activity it is also technically challenging, as it contains two main styles (classical and skating) and many sub-techniques within these styles. To further understand the physiological demands and technical challenges of cross-country skiing it is imperative to identify sub-techniques and basic motion features during training and competitions. Therefore, this paper presents features for identification and assessment of the basic motion patterns used during classical-style cross-country skiing. The main motivation for this work is to contribute to the development of a more detailed platform for comparing and communicating results from technique analysis methods, to prevent unambiguous definitions and to allow more precise discussions and quality assessments of an athlete's technical ability. To achieve this, our paper proposes formal motion components and classical style technique definitions as well as sub-technique classifiers. This structure is general and can be used directly for other cyclic activities with clearly defined and distinguishable sub-techniques, such as the skating style in cross country skiing. The motion component features suggested in our approach are arm synchronization, leg kick, leg kick direction, leg kick rotation, foot/ski orientation and energy like measures of the arm, and leg motion. By direct measurement, estimation, and the combination of these components, the traditional sub-techniques of diagonal stride, double poling, double poling kick, herringbone, as well as turning techniques can be identified. By assuming that the proposed definitions of the classical XC skiing sub-techniques are accepted, the presented classifier is proven to map measures from the motion component definitions to a unique representation of the sub-techniques. This formalization and structure may be used on new motion components, measurement principles, and classifiers, and therefore provides a framework for comparing different methodologies. Pilot data from a group of high-level cross-country skiers employing inertial measurement sensors placed on the athlete's arms and skis are used to Tjønnås et al.

Kinematics of cross-country sit skiing during a Paralympic race

Journal of Electromyography and Kinesiology, 2013

The study had three purposes: to verify a hypothesized speed decrease during the 15 km cross-country sit skiing (CCSS) race; documenting this possible fatigue effect (speed decrease), to evaluate changes among the four laps in kinematics parameters (cycle speed, cycle duration, cycle length, duty cycle (percentage ratio between pushing and total cycle duration), pole inclination, trunk inclination and shoulder-hand distance); to compare the kinematics parameters in cross-country sit skiers of different level. Video recordings were carried out during the 2006 Turin Winter Paralympic Games with two conventional digital video-cameras positioned on a flat and an uphill (8.3°) track, respectively. Better performing skiers (G1) had significantly higher speeds than worse performers (G2) both in the flat (6.54 ± 0.13 vs. 5.89 ± 0.50 m s À1 and 5.55 ± 0.14 vs. 4.62 ± 0.22 m s À1 in the first and last lap, respectively) and in the uphill track (3.67 ± 0.45 vs. 3.05 ± 0.59 m s À1 and 3.20 ± 0.36 vs. 2.26 ± 0.36 m s À1 in the first and last lap, respectively). The G1 athletes were able to maintain the high-speed better than the G2 over the entire race. Significant differences in cycle length and duty cycle between groups would be justified by the higher physical fitness of G1 skiers.

Analysis of Skier Kinetics During the Start and Kinematics Over the First Features During a Ski Cross Run

2018

The aim of this study was to analyse the start and the skiing technique in Ski Cross, and relate them to the performance. The project consisted of two parts: an indoor test was conducted to relate the momentum generated on the start handles to their velocity at handle release. Further, in an outdoor test, the skiers’ kinematics over the first features of was related to completion time of the first section (~30 m). Five athletes from the Swedish National Team were tested using an instrumented start gate, an inertial motion unit (IMU) based suit and a differential global navigation satellite system (GNSS). Results showed marked differences in starting technique leading to distinct momentums after handle release. These differences did not immediately relate to time used to cover the first feature (Wu-Tang) in the run. Results indicate that the generation of velocity in the gate is not the main criterion for a successful performance in the initial section of a ski cross run.