Copy Number Variation: Methods and Clinical Applications (original) (raw)

Applied Sciences

Gains and losses of large segments of genomic DNA, known as copy number variants (CNVs) gained considerable interest in clinical diagnostics lately, as particular forms may lead to inherited genetic diseases. In recent decades, researchers developed a wide variety of cytogenetic and molecular methods with different detection capabilities to detect clinically relevant CNVs. In this review, we summarize methodological progress from conventional approaches to current state of the art techniques capable of detecting CNVs from a few bases up to several megabases. Although the recent rapid progress of sequencing methods has enabled precise detection of CNVs, determining their functional effect on cellular and whole-body physiology remains a challenge. Here, we provide a comprehensive list of databases and bioinformatics tools that may serve as useful assets for researchers, laboratory diagnosticians, and clinical geneticists facing the challenge of CNV detection and interpretation.

SCIP: software for efficient clinical interpretation of copy number variants detected by whole-genome sequencing

Human Genetics

Copy number variants (CNVs) represent major etiologic factors in rare genetic diseases. Current clinical CNV interpretation workflows require extensive back-and-forth with multiple tools and databases. This increases complexity and time burden, potentially resulting in missed genetic diagnoses. We present the Suite for CNV Interpretation and Prioritization (SCIP), a software package for the clinical interpretation of CNVs detected by whole-genome sequencing (WGS). The SCIP Visualization Module near-instantaneously displays all information necessary for CNV interpretation (variant quality, population frequency, inheritance pattern, and clinical relevance) on a single pageā€”supported by modules providing variant filtration and prioritization. SCIP was comprehensively evaluated using WGS data from 1027 families with congenital cardiac disease and/or autism spectrum disorder, containing 187 pathogenic or likely pathogenic (P/LP) CNVs identified in previous curations. SCIP was efficient i...

Human copy number variants are enriched in regions of low-mappability

2015

Germline copy number variants (CNVs) are known to affect a large portion of the human genome and have been implicated in many diseases. Although whole-genome sequencing can help identify CNVs, existing analytical methods suffer from limited sensitivity and specificity. Here we show that this is in large part due to the non-uniformity of read coverage, even after intra-sample normalization, and that this is exacerbated in regions of low-mappability. To improve on this, we propose PopSV, an analytical method that uses multiple samples to control for technical variation and enables the robust detection of CNVs. We show that PopSV is able to detect up to 2.7 times more variants compared to previous methods, with an accuracy of about 90%. Applying PopSV to 640 normal and cancer whole-genome datasets, we demonstrate that CNVs affect on average 7.4 million DNA bases in each individual, a 23% increase over previous estimates. Notably, we find that regions of low-mappability are approximatel...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.